| 
					 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  | 
						import numpy as np import pandas as pd import sklearn from sklearn.datasets import load_iris iris_dataset = load_iris() print(iris_dataset.keys()) #>>>  ['DESCR', 'target_names', 'feature_names', 'target', 'data'] #DESCRはデータセットの解説があるという事 #その他はデータの種類を示している print(iris_dataset["DESCR"[:193]]+"\n...") #データセットの詳細を知る為にDESCRを表示  | 
					
結果
150のデータと4つのデータの種類設定コード
| 
					 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64  | 
						Iris Plants Database ==================== Notes ----- Data Set Characteristics:     :Number of Instances: 150 (50 in each of three classes)     :Number of Attributes: 4 numeric, predictive attributes and the class     :Attribute Information:         - sepal length in cm         - sepal width in cm         - petal length in cm         - petal width in cm         - class:                 - Iris-Setosa                 - Iris-Versicolour                 - Iris-Virginica     :Summary Statistics:     ============== ==== ==== ======= ===== ====================                     Min  Max   Mean    SD   Class Correlation     ============== ==== ==== ======= ===== ====================     sepal length:   4.3  7.9   5.84   0.83    0.7826     sepal width:    2.0  4.4   3.05   0.43   -0.4194     petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)     petal width:    0.1  2.5   1.20  0.76     0.9565  (high!)     ============== ==== ==== ======= ===== ====================     :Missing Attribute Values: None     :Class Distribution: 33.3% for each of 3 classes.     :Creator: R.A. Fisher     :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)     :Date: July, 1988 This is a copy of UCI ML iris datasets. http://archive.ics.uci.edu/ml/datasets/Iris The famous Iris database, first used by Sir R.A Fisher This is perhaps the best known database to be found in the pattern recognition literature.  Fisher's paper is a classic in the field and is referenced frequently to this day.  (See Duda & Hart, for example.)  The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant.  One class is linearly separable from the other 2; the latter are NOT linearly separable from each other. References ----------    - Fisher,R.A. "The use of multiple measurements in taxonomic problems"      Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to      Mathematical Statistics" (John Wiley, NY, 1950).    - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.      (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.    - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System      Structure and Classification Rule for Recognition in Partially Exposed      Environments".  IEEE Transactions on Pattern Analysis and Machine      Intelligence, Vol. PAMI-2, No. 1, 67-71.    - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions      on Information Theory, May 1972, 431-433.    - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II      conceptual clustering system finds 3 classes in the data.    - Many, many more ... ...  | 
					
targetnameの種類を知りたい場合(アイリスの名称一覧)
| 
					 1  | 
						print(iris_dataset["target_names"])  | 
					
| 
					 1  | 
						['setosa' 'versicolor' 'virginica']  | 
					
コメントを残す