• Skip to main content
  • Skip to primary sidebar

学習記録

河副 太智

複数の分類器で一気に比較

2018年1月19日 by 河副 太智 Leave a Comment

複数の分類器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import pandas as pd
from sklearn.model_selection import train_test_split
 
df = pd.read_csv('train.csv')
 
df = df.drop(['Cabin','Name','PassengerId','Ticket'],axis=1)
train_X = df.drop('Survived', axis=1)
train_y = df.Survived
(train_X, test_X ,train_y, test_y) = train_test_split(train_X, train_y, test_size = 0.3, random_state = 666)
 
 
#決定木
from sklearn.tree import DecisionTreeClassifier
ki = DecisionTreeClassifier(random_state=0).fit(train_X, train_y)
print(ki.score(train_X,train_y))
 
 
 
#ランダムフォレスト
from sklearn.ensemble import RandomForestClassifier
mori = RandomForestClassifier(random_state=0).fit(train_X,train_y)
print(mori.score(train_X,train_y))
 
 
#ロジスティック回帰
from sklearn.linear_model import LogisticRegression
logi = LogisticRegression(C=100).fit(train_X,train_y)
print(logi.score(train_X,train_y))
 
 
#KNN
from sklearn.neighbors import KNeighborsClassifier
KNN = KNeighborsClassifier(4).fit(train_X,train_y)
print(KNN.score(train_X,train_y))
 
#SVC
from sklearn.svm import SVC
svc = SVC(probability=True).fit(train_X,train_y)
print(svc.score(train_X,train_y))
 
#AdaBoostClassifier
from sklearn.ensemble import AdaBoostClassifier
ada = AdaBoostClassifier().fit(train_X,train_y)
print(ada.score(train_X,train_y))
 
#GradientBoostingClassifier
from sklearn.ensemble import GradientBoostingClassifier
gra = GradientBoostingClassifier().fit(train_X,train_y)
print(gra.score(train_X,train_y))
 
#GaussianNB
from sklearn.naive_bayes import GaussianNB
gaus = GaussianNB().fit(train_X,train_y)
print(gaus.score(train_X,train_y))
 
#LinearDiscriminantAnalysis
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis().fit(train_X,train_y)
print(lda.score(train_X,train_y))
 
#QuadraticDiscriminantAnalysis
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
qua = QuadraticDiscriminantAnalysis().fit(train_X,train_y)
print(qua.score(train_X,train_y))

Out[]:
0.982343499197
0.967897271268
0.807383627608
0.796147672552
0.886035313002
0.837881219904
0.898876404494
0.796147672552
0.799357945425
0.813804173355

Filed Under: scikit-learn, 分析手法, 教師有り, 機械学習

データフレームでスライスが使えない

2018年1月16日 by 河副 太智 Leave a Comment

TypeError: unhashable type: ‘slice’

とエラーが出てデータフレームでスライスが使えない場合は以下のように
ilocを使う

1
2
3
4
5
6
7
8
train = pd.read_csv('train.csv', header = 0, dtype={'Age': np.float64})
test  = pd.read_csv('test.csv' , header = 0, dtype={'Age': np.float64})
full_data = [train, test]
 
 
dataset = pd.DataFrame(np.random.rand(10, 10))#random無くてもいける
y=train.iloc[0::, 1::]
X=train.iloc[0::, 0]

 

Filed Under: Pandas

指定の文字を別の文字に置き換える

2018年1月16日 by 河副 太智 Leave a Comment

1
2
3
4
5
6
7
8
9
for dataset in full_data:
    dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col',\
'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')
 
    dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
 
print (train[['Title', 'Survived']].groupby(['Title'], as_index=False).mean())

 

Filed Under: python3

意味の同じ要素を一つに統合

2018年1月16日 by 河副 太智 Leave a Comment

 

‘Ms’, ‘Miss’の2つは同じ意味なのでこういったものを一つに統合

O’Driscoll, Miss. Bridget
Samaan, Mr. Youssef
Arnold-Franchi, Mrs. Josef (Josefine Franchi)
Panula, Master. Juha Niilo
Nosworthy, Mr. Richard Cater
Harper, Mrs. Henry Sleeper (Myna Haxtun)
Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)
Ostby, Mr. Engelhart Cornelius
Woolner, Mr. Hugh

1
2
3
4
5
6
7
8
9
10
11
def get_title(name):
title_search = re.search(' ([A-Za-z]+)\.', name)
# If the title exists, extract and return it.
if title_search:
return title_search.group(1)
return ""
 
for dataset in full_data:
    dataset['Title'] = dataset['Name'].apply(get_title)
 
print(pd.crosstab(train['Title'], train['Sex']))

 

上記の結果以下のように名前のタイトルの一覧が出る

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Sex       female  male
Title                
Capt           0     1
Col            0     2
Countess       1     0
Don            0     1
Dr             1     6
Jonkheer       0     1
Lady           1     0
Major          0     2
Master         0    40
Miss         182     0
Mlle           2     0
Mme            1     0
Mr             0   517
Mrs          125     0
Ms             1     0
Rev            0     6
Sir            0     1

 

同じ意味の物を統合する

1
2
3
4
5
6
7
8
9
for dataset in full_data:
    dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col',\
'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')
 
    dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
 
print (train[['Title', 'Survived']].groupby(['Title'], as_index=False).mean())

 

結果

1
2
3
4
5
6
   Title  Survived
0  Master  0.575000
1    Miss  0.702703
2      Mr  0.156673
3     Mrs  0.793651
4    Rare  0.347826

 

Filed Under: データクレンジング

データセットの数、カラム、型の一覧表示

2018年1月16日 by 河副 太智 Leave a Comment

1
train.info()

RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId 891 non-null int64
Survived 891 non-null int64
Pclass 891 non-null int64
Name 891 non-null object
Sex 891 non-null object
Age 714 non-null float64
SibSp 891 non-null int64
Parch 891 non-null int64
Ticket 891 non-null object
Fare 891 non-null float64
Cabin 204 non-null object
Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
None

Filed Under: Pandas

決定木

2018年1月16日 by 河副 太智 Leave a Comment

決定木

1
2
3
4
5
6
7
8
9
10
11
12
13
train_X = df.drop('Survived', axis=1)
train_y = df.Survived
(train_X, test_X ,train_y, test_y) = train_test_split(train_X, train_y, test_size = 0.3, random_state = 666)
 
#決定木
clf = DecisionTreeClassifier(random_state=0)
clf = clf.fit(train_X, train_y)
pred = clf.predict(test_X)
 
#決定木のモデルスコア
fpr, tpr, thresholds = roc_curve(test_y, pred, pos_label=1)
auc(fpr, tpr)
accuracy_score(pred, test_y)

 

Filed Under: 分析手法, 機械学習

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • Interim pages omitted …
  • Page 66
  • Go to Next Page »

Primary Sidebar

カテゴリー

  • AWS
  • Bootstrap
  • Dash
  • Django
  • flask
  • GIT(sourcetree)
  • Plotly/Dash
  • VPS
  • その他tool
  • ブログ
  • プログラミング
    • Bokeh
    • css
    • HoloViews
    • Jupyter
    • Numpy
    • Pandas
    • PosgreSQL
    • Python 基本
    • python3
      • webアプリ
    • python3解説
    • scikit-learn
    • scipy
    • vps
    • Wordpress
    • グラフ
    • コマンド
    • スクレイピング
    • チートシート
    • データクレンジング
    • ブロックチェーン
    • 作成実績
    • 時系列分析
    • 機械学習
      • 分析手法
      • 教師有り
    • 異常値検知
    • 自然言語処理
  • 一太郎
  • 数学
    • sympy
      • 対数関数(log)
      • 累乗根(n乗根)
    • 暗号学

Copyright © 2025 · Genesis Sample on Genesis Framework · WordPress · Log in