• Skip to main content
  • Skip to primary sidebar

学習記録

bin ビンニング 一定数値の範囲内にある物を探す

2017年11月29日 by 河副 太智 Leave a Comment

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
<span class="c1"># 年齢と性別のデータ</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">DataFrame</span><span class="p">([[</span><span class="mi">20</span><span class="p">,</span><span class="s2">"F"</span><span class="p">],[</span><span class="mi">22</span><span class="p">,</span><span class="s2">"M"</span><span class="p">],[</span><span class="mi">25</span><span class="p">,</span><span class="s2">"M"</span><span class="p">],[</span><span class="mi">27</span><span class="p">,</span><span class="s2">"M"</span><span class="p">],[</span><span class="mi">21</span><span class="p">,</span><span class="s2">"F"</span><span class="p">],[</span><span class="mi">23</span><span class="p">,</span><span class="s2">"M"</span><span class="p">],[</span><span class="mi">37</span><span class="p">,</span><span class="s2">"F"</span><span class="p">],[</span><span class="mi">31</span><span class="p">,</span><span class="s2">"M"</span><span class="p">],[</span><span class="mi">61</span><span class="p">,</span><span class="s2">"F"</span><span class="p">],[</span><span class="mi">45</span><span class="p">,</span><span class="s2">"M"</span><span class="p">],[</span><span class="mi">41</span><span class="p">,</span><span class="s2">"F"</span><span class="p">],[</span><span class="mi">32</span><span class="p">,</span><span class="s2">"M"</span><span class="p">]],</span> <span class="n">columns</span><span class="o">=</span><span class="p">[</span><span class="s2">"age"</span><span class="p">,</span> <span class="s2">"sex"</span><span class="p">])</span>
<span class="k">print</span> <span class="n">df</span>
<span class="sd">"""</span>
<span class="sd">   age sex</span>
<span class="sd">0   20   F</span>
<span class="sd">1   22   M</span>
<span class="sd">2   25   M</span>
<span class="sd">3   27   M</span>
<span class="sd">4   21   F</span>
<span class="sd">5   23   M</span>
<span class="sd">6   37   F</span>
<span class="sd">7   31   M</span>
<span class="sd">8   61   F</span>
<span class="sd">9   45   M</span>
<span class="sd">10  41   F</span>
<span class="sd">11  32   M</span>
<span class="sd">"""</span>
 
<span class="c1"># ビンに分割するときの値</span>
<span class="n">bins</span> <span class="o">=</span> <span class="p">[</span><span class="mi">18</span><span class="p">,</span> <span class="mi">25</span><span class="p">,</span> <span class="mi">35</span><span class="p">,</span> <span class="mi">60</span><span class="p">,</span> <span class="mi">100</span><span class="p">]</span>
<span class="c1"># ビンの名前</span>
<span class="n">group_names</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"Youth"</span><span class="p">,</span> <span class="s2">"YoungAdult"</span><span class="p">,</span> <span class="s2">"MiddleAged"</span><span class="p">,</span> <span class="s2">"Senior"</span><span class="p">]</span>
<span class="c1"># ビン化</span>
<span class="k">print</span> <span class="n">pd</span><span class="o">.</span><span class="n">cut</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">age</span><span class="p">,</span> <span class="n">bins</span><span class="p">,</span> <span class="n">labels</span><span class="o">=</span><span class="n">group_names</span><span class="p">)</span>
<span class="sd">"""</span>
<span class="sd">Categorical: </span>
<span class="sd">[Youth, Youth, Youth, YoungAdult, Youth, Youth, nan, YoungAdult, nan, nan, nan, YoungAdult]</span>
<span class="sd">Levels (4): Index(['Youth', 'YoungAdult', 'MiddleAged', 'Senior'], dtype=object)</span>
<span class="sd">"""</span>
 
<span class="c1"># dfにビンの列を追加</span>
<span class="n">df</span><span class="p">[</span><span class="s2">"bin"</span><span class="p">]</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">cut</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">age</span><span class="p">,</span> <span class="n">bins</span><span class="p">,</span> <span class="n">labels</span><span class="o">=</span><span class="n">group_names</span><span class="p">)</span>
<span class="k">print</span> <span class="n">df</span>
<span class="sd">"""</span>
<span class="sd">    age sex         bin</span>
<span class="sd">0    20   F       Youth</span>
<span class="sd">1    22   M       Youth</span>
<span class="sd">2    25   M       Youth</span>
<span class="sd">3    27   M  YoungAdult</span>
<span class="sd">4    21   F       Youth</span>
<span class="sd">5    23   M       Youth</span>
<span class="sd">6    37   F  MiddleAged</span>
<span class="sd">7    31   M  YoungAdult</span>
<span class="sd">8    61   F      Senior</span>
<span class="sd">9    45   M  MiddleAged</span>
<span class="sd">10   41   F  MiddleAged</span>
<span class="sd">11   32   M  YoungAdult</span>
<span class="sd">"""</span>

このエントリーをはてなブックマークに追加

Tweet
[`yahoo` not found]
このエントリーを Google ブックマーク に追加
LinkedIn にシェア
LINEで送る


Filed Under: Pandas

Reader Interactions

コメントを残す コメントをキャンセル

メールアドレスが公開されることはありません。 ※ が付いている欄は必須項目です

Primary Sidebar

カテゴリー

  • AWS
  • Bootstrap
  • Dash
  • Django
  • flask
  • GIT(sourcetree)
  • Plotly/Dash
  • VPS
  • その他tool
  • ブログ
  • プログラミング
    • Bokeh
    • css
    • HoloViews
    • Jupyter
    • Numpy
    • Pandas
    • PosgreSQL
    • Python 基本
    • python3
      • webアプリ
    • python3解説
    • scikit-learn
    • scipy
    • vps
    • Wordpress
    • グラフ
    • コマンド
    • スクレイピング
    • チートシート
    • データクレンジング
    • ブロックチェーン
    • 作成実績
    • 時系列分析
    • 機械学習
      • 分析手法
      • 教師有り
    • 異常値検知
    • 自然言語処理
  • 一太郎
  • 数学
    • sympy
      • 対数関数(log)
      • 累乗根(n乗根)
    • 暗号学

Copyright © 2025 · Genesis Sample on Genesis Framework · WordPress · Log in