• Skip to main content
  • Skip to primary sidebar

学習記録

プログラミング

複数のデータの訓練、テストスコアを比較

2018年1月23日 by 河副 太智 Leave a Comment

過学習でないかどうかを調べる

訓練セットスコアとテストセットの値が非常に近い場合は適合不足
0.9や1の場合は過学習を疑う

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#決定木
from sklearn.tree import DecisionTreeClassifier
ki = DecisionTreeClassifier(random_state=0).fit(train_X, train_y)
print("ketteiki training score{:.2f}".format(ki.score(train_X,train_y)))
print("ketteiki test score{:.2f}".format(ki.score(test_X,test_y)))
 
 
 
#ランダムフォレスト
from sklearn.ensemble import RandomForestClassifier
mori = RandomForestClassifier(random_state=0).fit(train_X,train_y)
print("mori training score{:.2f}".format(mori.score(train_X,train_y)))
print("mori test score{:.2f}".format(mori.score(test_X,test_y)))
 
 
#ロジスティック回帰
from sklearn.linear_model import LogisticRegression
logi = LogisticRegression(C=100).fit(train_X,train_y)
print("logi training score{:.2f}".format(logi.score(train_X,train_y)))
print("logi test score{:.2f}".format(logi.score(test_X,test_y)))
 
 
# #KNN
from sklearn.neighbors import KNeighborsClassifier
KNN = KNeighborsClassifier(4).fit(train_X,train_y)
print("KNN training score{:.2f}".format(KNN.score(train_X,train_y)))
print("KNN test score{:.2f}".format(KNN.score(test_X,test_y)))
 
# #SVC
from sklearn.svm import SVC
svc = SVC(probability=True).fit(train_X,train_y)
print("svc training score{:.2f}".format(svc.score(train_X,train_y)))
print("svc test score{:.2f}".format(svc.score(test_X,test_y)))
 
# #AdaBoostClassifier
from sklearn.ensemble import AdaBoostClassifier
ada = AdaBoostClassifier().fit(train_X,train_y)
print("ada training score{:.2f}".format(ada.score(train_X,train_y)))
print("ada test score{:.2f}".format(ada.score(test_X,test_y)))
 
# #GradientBoostingClassifier
from sklearn.ensemble import GradientBoostingClassifier
gra = GradientBoostingClassifier().fit(train_X,train_y)
print("gra training score{:.2f}".format(gra.score(train_X,train_y)))
print("gra test score{:.2f}".format(gra.score(test_X,test_y)))
 
# #GaussianNB
from sklearn.naive_bayes import GaussianNB
gaus = GaussianNB().fit(train_X,train_y)
print("gaus training score{:.2f}".format(gaus.score(train_X,train_y)))
print("gaus test score{:.2f}".format(gaus.score(test_X,test_y)))
 
# #LinearDiscriminantAnalysis
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis().fit(train_X,train_y)
print("lda training score{:.2f}".format(lda.score(train_X,train_y)))
print("lda test score{:.2f}".format(lda.score(test_X,test_y)))
 
# #QuadraticDiscriminantAnalysis
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
qua = QuadraticDiscriminantAnalysis().fit(train_X,train_y)
print("qua training score{:.2f}".format(qua.score(train_X,train_y)))
print("qua test score{:.2f}".format(qua.score(test_X,test_y)))

 

Filed Under: 教師有り, 機械学習

pipコマンド

2018年1月19日 by 河副 太智 Leave a Comment

パッケージインストール

1
2
3
4
5
6
7
8
9
python -m pip install <PackageName>
 
or
 
python -m pip install <PackageName>==<VersionNumber>
 
or
 
python -m pip install numpy==1.11.0

 

一括インストール

1
2
3
4
5
6
7
8
9
python -m pip install -r requirements.txt
 
 
テキストを作成
 
requirements.txt
 
numpy==1.11.0
six==1.10.0

 

パッケージのアンインストール

1
python -m pip uninstall <PackageName>

 

インストール済みパッケージの確認

1
python -m pip freeze

 

 

pipの有無

1
2
3
4
python -m pip -V
 
pip 8.1.2 from C:¥python27¥lib¥site-packages (python 2.7)と出れば
インストール済

 

pipのインストール
https://bootstrap.pypa.io/get-pip.py
からダウンロードしてから

1
python get-pip.py

 

pipのアップグレード

1
python -m pip install --upgrade pip

 

Filed Under: Python 基本

複数の分類器で一気に比較

2018年1月19日 by 河副 太智 Leave a Comment

複数の分類器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import pandas as pd
from sklearn.model_selection import train_test_split
 
df = pd.read_csv('train.csv')
 
df = df.drop(['Cabin','Name','PassengerId','Ticket'],axis=1)
train_X = df.drop('Survived', axis=1)
train_y = df.Survived
(train_X, test_X ,train_y, test_y) = train_test_split(train_X, train_y, test_size = 0.3, random_state = 666)
 
 
#決定木
from sklearn.tree import DecisionTreeClassifier
ki = DecisionTreeClassifier(random_state=0).fit(train_X, train_y)
print(ki.score(train_X,train_y))
 
 
 
#ランダムフォレスト
from sklearn.ensemble import RandomForestClassifier
mori = RandomForestClassifier(random_state=0).fit(train_X,train_y)
print(mori.score(train_X,train_y))
 
 
#ロジスティック回帰
from sklearn.linear_model import LogisticRegression
logi = LogisticRegression(C=100).fit(train_X,train_y)
print(logi.score(train_X,train_y))
 
 
#KNN
from sklearn.neighbors import KNeighborsClassifier
KNN = KNeighborsClassifier(4).fit(train_X,train_y)
print(KNN.score(train_X,train_y))
 
#SVC
from sklearn.svm import SVC
svc = SVC(probability=True).fit(train_X,train_y)
print(svc.score(train_X,train_y))
 
#AdaBoostClassifier
from sklearn.ensemble import AdaBoostClassifier
ada = AdaBoostClassifier().fit(train_X,train_y)
print(ada.score(train_X,train_y))
 
#GradientBoostingClassifier
from sklearn.ensemble import GradientBoostingClassifier
gra = GradientBoostingClassifier().fit(train_X,train_y)
print(gra.score(train_X,train_y))
 
#GaussianNB
from sklearn.naive_bayes import GaussianNB
gaus = GaussianNB().fit(train_X,train_y)
print(gaus.score(train_X,train_y))
 
#LinearDiscriminantAnalysis
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis().fit(train_X,train_y)
print(lda.score(train_X,train_y))
 
#QuadraticDiscriminantAnalysis
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
qua = QuadraticDiscriminantAnalysis().fit(train_X,train_y)
print(qua.score(train_X,train_y))

Out[]:
0.982343499197
0.967897271268
0.807383627608
0.796147672552
0.886035313002
0.837881219904
0.898876404494
0.796147672552
0.799357945425
0.813804173355

Filed Under: scikit-learn, 分析手法, 教師有り, 機械学習

データフレームでスライスが使えない

2018年1月16日 by 河副 太智 Leave a Comment

TypeError: unhashable type: ‘slice’

とエラーが出てデータフレームでスライスが使えない場合は以下のように
ilocを使う

1
2
3
4
5
6
7
8
train = pd.read_csv('train.csv', header = 0, dtype={'Age': np.float64})
test  = pd.read_csv('test.csv' , header = 0, dtype={'Age': np.float64})
full_data = [train, test]
 
 
dataset = pd.DataFrame(np.random.rand(10, 10))#random無くてもいける
y=train.iloc[0::, 1::]
X=train.iloc[0::, 0]

 

Filed Under: Pandas

指定の文字を別の文字に置き換える

2018年1月16日 by 河副 太智 Leave a Comment

1
2
3
4
5
6
7
8
9
for dataset in full_data:
    dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col',\
'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')
 
    dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
 
print (train[['Title', 'Survived']].groupby(['Title'], as_index=False).mean())

 

Filed Under: python3

意味の同じ要素を一つに統合

2018年1月16日 by 河副 太智 Leave a Comment

 

‘Ms’, ‘Miss’の2つは同じ意味なのでこういったものを一つに統合

O’Driscoll, Miss. Bridget
Samaan, Mr. Youssef
Arnold-Franchi, Mrs. Josef (Josefine Franchi)
Panula, Master. Juha Niilo
Nosworthy, Mr. Richard Cater
Harper, Mrs. Henry Sleeper (Myna Haxtun)
Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)
Ostby, Mr. Engelhart Cornelius
Woolner, Mr. Hugh

1
2
3
4
5
6
7
8
9
10
11
def get_title(name):
title_search = re.search(' ([A-Za-z]+)\.', name)
# If the title exists, extract and return it.
if title_search:
return title_search.group(1)
return ""
 
for dataset in full_data:
    dataset['Title'] = dataset['Name'].apply(get_title)
 
print(pd.crosstab(train['Title'], train['Sex']))

 

上記の結果以下のように名前のタイトルの一覧が出る

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Sex       female  male
Title                
Capt           0     1
Col            0     2
Countess       1     0
Don            0     1
Dr             1     6
Jonkheer       0     1
Lady           1     0
Major          0     2
Master         0    40
Miss         182     0
Mlle           2     0
Mme            1     0
Mr             0   517
Mrs          125     0
Ms             1     0
Rev            0     6
Sir            0     1

 

同じ意味の物を統合する

1
2
3
4
5
6
7
8
9
for dataset in full_data:
    dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col',\
'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')
 
    dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
 
print (train[['Title', 'Survived']].groupby(['Title'], as_index=False).mean())

 

結果

1
2
3
4
5
6
   Title  Survived
0  Master  0.575000
1    Miss  0.702703
2      Mr  0.156673
3     Mrs  0.793651
4    Rare  0.347826

 

Filed Under: データクレンジング

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Interim pages omitted …
  • Page 55
  • Go to Next Page »

Primary Sidebar

カテゴリー

  • AWS
  • Bootstrap
  • Dash
  • Django
  • flask
  • GIT(sourcetree)
  • Plotly/Dash
  • VPS
  • その他tool
  • ブログ
  • プログラミング
    • Bokeh
    • css
    • HoloViews
    • Jupyter
    • Numpy
    • Pandas
    • PosgreSQL
    • Python 基本
    • python3
      • webアプリ
    • python3解説
    • scikit-learn
    • scipy
    • vps
    • Wordpress
    • グラフ
    • コマンド
    • スクレイピング
    • チートシート
    • データクレンジング
    • ブロックチェーン
    • 作成実績
    • 時系列分析
    • 機械学習
      • 分析手法
      • 教師有り
    • 異常値検知
    • 自然言語処理
  • 一太郎
  • 数学
    • sympy
      • 対数関数(log)
      • 累乗根(n乗根)
    • 暗号学

Copyright © 2025 · Genesis Sample on Genesis Framework · WordPress · Log in