• Skip to main content
  • Skip to primary sidebar

学習記録

プログラミング

DataFrame 要約計量 平均、最大、最小、標準偏差等

2017年11月26日 by 河副 太智 Leave a Comment

列ごとの平均値、最大値、最小値等統計的情報を要約統計量と呼ぶ。
DataFrameの変数に対して、変数.describe()は変数の列ごとの
個数、平均値、標準偏差、最小値、四分位数、最大値を返す。

DataFrameのインデックスの数字は統計量の名前に置き換わる

1
<span role="presentation"><span class="cm-keyword">import</span> <span class="cm-variable">numpy</span> <span class="cm-keyword">as</span> <span class="cm-variable">np</span></span>

1
<span role="presentation"><span class="cm-keyword">import</span> <span class="cm-variable">pandas</span> <span class="cm-keyword">as</span> <span class="cm-variable">pd</span></span>

1
<span role="presentation"><span class="cm-variable">np</span>.<span class="cm-property">random</span>.<span class="cm-property">seed</span>(<span class="cm-number">0</span>)</span>

1
<span role="presentation"><span class="cm-variable">columns</span> = [<span class="cm-string">"apple"</span>, <span class="cm-string">"orange"</span>, <span class="cm-string">"banana"</span>, <span class="cm-string">"strawberry"</span>, <span class="cm-string">"kiwifruit"</span>]</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-comment"># DataFrameを生成し、列を追加</span></span>

1
<span role="presentation"><span class="cm-variable">df</span> = <span class="cm-variable">pd</span>.<span class="cm-property">DataFrame</span>()</span>

1
<span role="presentation"><span class="cm-keyword">for</span> <span class="cm-variable">column</span> <span class="cm-keyword">in</span> <span class="cm-variable">columns</span>:</span>

1
<span role="presentation">    <span class="cm-variable">df</span>[<span class="cm-variable">column</span>] = <span class="cm-variable">np</span>.<span class="cm-property">random</span>.<span class="cm-property">choice</span>(<span class="cm-builtin">range</span>(<span class="cm-number">1</span>, <span class="cm-number">11</span>), <span class="cm-number">10</span>)</span>

1
<span role="presentation"><span class="cm-variable">df</span>.<span class="cm-property">index</span> = <span class="cm-builtin">range</span>(<span class="cm-number">1</span>, <span class="cm-number">11</span>)</span>

1
<span role="presentation"><span class="cm-builtin">print</span><span class=" CodeMirror-matchingbracket">(</span><span class="cm-variable">df</span><span class=" CodeMirror-matchingbracket">)</span></span>

1
<span role="presentation"><span class="cm-comment"># dfの要約統計量のうち、"mean", "max", "min"を取り出してdf_desに代入してください</span></span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-variable">df_des</span> = <span class="cm-variable">df</span>.<span class="cm-property">describe</span>().<span class="cm-property">loc</span>[[<span class="cm-string">"mean"</span>, <span class="cm-string">"max"</span>, <span class="cm-string">"min"</span>]]</span>

1
<span role="presentation"><span class="cm-builtin">print</span>(<span class="cm-variable">df_des</span>)</span>
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
    apple  orange  banana  strawberry  kiwifruit
1       6       8       6           3         10
2       1       7      10           4         10
3       4       9       9           9          1
4       4       9      10           2          5
5       8       2       5           4          8
6      10       7       4           4          4
7       4       8       1           4          3
8       6       8       4           8          8
9       3       9       6           1          3
10      5       2       1           2          1
↓
      apple  orange  banana  strawberry  kiwifruit
mean    5.1     6.9     5.6         4.1        5.3
max    10.0     9.0    10.0         9.0       10.0
min     1.0     2.0     1.0         1.0        1.0

Filed Under: Numpy, Pandas

DataFrame カラムの名称が異なるが意味が同じデータを繋げる

2017年11月26日 by 河副 太智 Leave a Comment

 pandas.merge(左側DF, 右側DF, left_on=”左側DFのカラム”,
right_on=”右側DFのカラム”, how=”結合方法”)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import pandas as pd
​
# 注文情報
order_df = pd.DataFrame([[1000, 2546, 103],
                         [1001, 4352, 101],
                         [1002, 342, 101]],
                         columns=["id", "item_id", "customer_id"])
# 顧客情報
customer_df = pd.DataFrame([[101, "Tanaka"],
                           [102, "Suzuki"],
                           [103, "Kato"]],
                           columns=["id", "name"])
​
# customer_dfを元に"name"をorder_dfに結合してorder_dfに代入してください
order_df = pd.merge(order_df,customer_df,left_on="customer_id",right_on="id",how="inner")
​
print(order_df)

 

1
2
3
4
   id_x  item_id  customer_id  id_y    name
0  1000     2546          103   103    Kato
1  1001     4352          101   101  Tanaka
2  1002      342          101   101  Tanaka

Filed Under: Numpy, Pandas

DataFrame 外部結合 合わないデータも結合

2017年11月26日 by 河副 太智 Leave a Comment

DataFrameの結合で共通するものが無くても結合し、
数値の孫座しない部分はNoneとなる

1
2
3
<span role="presentation"><span class="cm-keyword">
 
import</span> <span class="cm-variable">numpy</span> <span class="cm-keyword">as</span> <span class="cm-variable">np</span></span>

1
<span role="presentation"><span class="cm-keyword">import</span> <span class="cm-variable">pandas</span> <span class="cm-keyword">as</span> <span class="cm-variable">pd</span></span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-variable">data1</span> = {<span class="cm-string">"fruits"</span>: [<span class="cm-string">"apple"</span>, <span class="cm-string">"orange"</span>, <span class="cm-string">"banana"</span>, <span class="cm-string">"strawberry"</span>, <span class="cm-string">"kiwifruit"</span>],</span>

1
<span role="presentation">        <span class="cm-string">"year"</span>: [<span class="cm-number">2001</span>, <span class="cm-number">2002</span>, <span class="cm-number">2001</span>, <span class="cm-number">2008</span>, <span class="cm-number">2006</span>],</span>

1
<span role="presentation">        <span class="cm-string">"amount"</span>: [<span class="cm-number">1</span>, <span class="cm-number">4</span>, <span class="cm-number">5</span>, <span class="cm-number">6</span>, <span class="cm-number">3</span>]}</span>

1
<span role="presentation"><span class="cm-variable">df1</span> = <span class="cm-variable">pd</span>.<span class="cm-property">DataFrame</span>(<span class="cm-variable">data1</span>)</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-variable">data2</span> = {<span class="cm-string">"fruits"</span>: [<span class="cm-string">"apple"</span>, <span class="cm-string">"orange"</span>, <span class="cm-string">"banana"</span>, <span class="cm-string">"strawberry"</span>, <span class="cm-string">"mango"</span>],</span>

1
<span role="presentation">        <span class="cm-string">"year"</span>: [<span class="cm-number">2001</span>, <span class="cm-number">2002</span>, <span class="cm-number">2001</span>, <span class="cm-number">2008</span>, <span class="cm-number">2007</span>],</span>

1
<span role="presentation">        <span class="cm-string">"price"</span>: [<span class="cm-number">150</span>, <span class="cm-number">120</span>, <span class="cm-number">100</span>, <span class="cm-number">250</span>, <span class="cm-number">3000</span>]}</span>

1
<span role="presentation"><span class="cm-variable">df2</span> = <span class="cm-variable">pd</span>.<span class="cm-property">DataFrame</span>(<span class="cm-variable">data2</span>)</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-comment"># df1, df2の中身を確認してください</span></span>

1
<span role="presentation"><span class="cm-builtin">print</span>(<span class="cm-variable">df1</span>)</span>

1
<span role="presentation"><span class="cm-builtin">print</span>(<span class="cm-variable">df2</span>)</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-comment"># df1とdf2を"fruits"をキーに外部結合して作成したDataFrameをdf3に代入してください</span></span>

1
<span role="presentation"><span class="cm-variable">df3</span> = <span class="cm-variable">pd</span>.<span class="cm-property">merge</span>(<span class="cm-variable">df1</span>, <span class="cm-variable">df2</span>, <span class="cm-variable">on</span>=<span class="cm-string">"fruits"</span>, <span class="cm-variable">how</span>=<span class="cm-string">"outer"</span>)</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-builtin">print</span><span class=" CodeMirror-matchingbracket">(</span><span class="cm-variable">df3</span><span class=" CodeMirror-matchingbracket">)</span></span>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
   amount      fruits  year
0       1       apple  2001
1       4      orange  2002
2       5      banana  2001
3       6  strawberry  2008
4       3   kiwifruit  2006
       fruits  price  year
0       apple    150  2001
1      orange    120  2002
2      banana    100  2001
3  strawberry    250  2008
4       mango   3000  2007
   amount      fruits  year_x   price  year_y
0     1.0       apple  2001.0   150.0  2001.0
1     4.0      orange  2002.0   120.0  2002.0
2     5.0      banana  2001.0   100.0  2001.0
3     6.0  strawberry  2008.0   250.0  2008.0
4     3.0   kiwifruit  2006.0     NaN     NaN
5     NaN       mango     NaN  3000.0  2007.0

Filed Under: Numpy, Pandas

DataFrameできる事

2017年11月26日 by 河副 太智 Leave a Comment

内部結合とは共通するデータのみを結合し、
共通しないデータは破棄される

 

■データフレーム作成

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-variable">data1</span> = {<span class="cm-string">"fruits"</span>: [<span class="cm-string">"apple"</span>, <span class="cm-string">"orange"</span>, <span class="cm-string">"banana"</span>, <span class="cm-string">"strawberry"</span>, <span class="cm-string">"kiwifruit"</span>],</span>

1
<span role="presentation">        <span class="cm-string">"year"</span>: [<span class="cm-number">2001</span>, <span class="cm-number">2002</span>, <span class="cm-number">2001</span>, <span class="cm-number">2008</span>, <span class="cm-number">2006</span>],</span>

1
<span role="presentation">        <span class="cm-string">"amount"</span>: [<span class="cm-number">1</span>, <span class="cm-number">4</span>, <span class="cm-number">5</span>, <span class="cm-number">6</span>, <span class="cm-number">3</span>]}</span>

1
<span role="presentation"><span class="cm-variable">df1</span> = <span class="cm-variable">pd</span>.<span class="cm-property">DataFrame</span>(<span class="cm-variable">data1</span>)</span>

1
 

1
2
3
4
<span role="presentation"><span class="cm-builtin">print</span>(<span class="cm-variable">df1</span>)
 
 
</span>

1
2
3
4
5
6
   amount      fruits  year
0       1       apple  2001
1       4      orange  2002
2       5      banana  2001
3       6  strawberry  2008
4       3   kiwifruit  2006

1
<span role="presentation"> </span>

1
 

​■データフレーム縦方向に直接結合

# df_data1とdf_data2を縦方向に連結しdf1に代入
df1 = pd.concat([df_data1, df_data2], axis=0)

 

apple orange banana
1 45 68 37
2 48 10 88
3 65 84 71
4 68 22 89
1 38 76 17
2 13 6 2
3 73 80 77
4 10 65 72

 

■データフレーム横方向に直接結合

# df_data1とdf_data2を横方向に連結しdf1に代入
df2 = pd.concat([df_data1, df_data2], axis=1)

 

  apple orange banana apple orange banana
1    45  68    37  38   76   17
2    48  10    88  13   6    2
3    65  84    71  73   80   77
4    68  22    89  10   65   72

■ソート

df = df.sort_values(カラムの変数””はなし)

■フィルタリング 条件抽出

columns = [“apple”, “orange”, “banana”, “strawberry”, “kiwifruit”]

1
<span role="presentation"><span class="cm-comment"># DataFrameを生成し、列を追加</span></span>

1
<span role="presentation"><span class="cm-variable">df</span> = <span class="cm-variable">pd</span>.<span class="cm-property">DataFrame</span>()</span>

1
<span role="presentation"><span class="cm-keyword">for</span> <span class="cm-variable">column</span> <span class="cm-keyword">in</span> <span class="cm-variable">columns</span>:</span>

1
<span role="presentation">    <span class="cm-variable">df</span>[<span class="cm-variable">column</span>] = <span class="cm-variable">np</span>.<span class="cm-property">random</span>.<span class="cm-property">choice</span>(<span class="cm-builtin">range</span>(<span class="cm-number">1</span>, <span class="cm-number">11</span>), <span class="cm-number">10</span>)</span>

1
<span role="presentation"><span class="cm-variable">df</span>.<span class="cm-property">index</span> = <span class="cm-builtin">range</span>(<span class="cm-number">1</span>, <span class="cm-number">11</span>)</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-comment"># dfの"apple"列が5以上かつ"kiwifruit"列が5以上の値をもつ行を含むDataFrameをdfに代入してください</span></span>

1
<span role="presentation">​</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-variable">df</span> = <span class="cm-variable">df</span>.<span class="cm-property">loc</span>[<span class="cm-variable">df</span>[<span class="cm-string">"apple"</span>] <span class="cm-operator">&gt;</span>= <span class="cm-number">5</span>]</span>

1
<span role="presentation"><span class="cm-variable">df</span> = <span class="cm-variable">df</span>.<span class="cm-property">loc</span>[<span class="cm-variable">df</span>[<span class="cm-string">"kiwifruit"</span>] <span class="cm-operator">&gt;</span>= <span class="cm-number">5</span>  ]</span>

1
<span role="presentation"><span class="cm-builtin">print</span>(<span class="cm-variable">df</span>)&gt;&gt;&gt;</span>
1
2
3
4
5
6
apple  orange  banana  strawberry  kiwifruit
1      6       8       6           3         10
5      8       2       5           4          8
8      6       8       4           8          8
 
a

■内部結合 marge

1
<span role="presentation"><span class="cm-keyword">import</span> <span class="cm-variable">numpy</span> <span class="cm-keyword">as</span> <span class="cm-variable">np</span></span>

1
<span role="presentation"><span class="cm-keyword">import</span> <span class="cm-variable">pandas</span> <span class="cm-keyword">as</span> <span class="cm-variable">pd</span></span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-variable">data1</span> = {<span class="cm-string">"fruits"</span>: [<span class="cm-string">"apple"</span>, <span class="cm-string">"orange"</span>, <span class="cm-string">"banana"</span>, <span class="cm-string">"strawberry"</span>, <span class="cm-string">"kiwifruit"</span>],</span>

1
<span role="presentation">        <span class="cm-string">"year"</span>: [<span class="cm-number">2001</span>, <span class="cm-number">2002</span>, <span class="cm-number">2001</span>, <span class="cm-number">2008</span>, <span class="cm-number">2006</span>],</span>

1
<span role="presentation">        <span class="cm-string">"amount"</span>: [<span class="cm-number">1</span>, <span class="cm-number">4</span>, <span class="cm-number">5</span>, <span class="cm-number">6</span>, <span class="cm-number">3</span>]}</span>

1
<span role="presentation"><span class="cm-variable">df1</span> = <span class="cm-variable">pd</span>.<span class="cm-property">DataFrame</span>(<span class="cm-variable">data1</span>)</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-variable">data2</span> = {<span class="cm-string">"fruits"</span>: [<span class="cm-string">"apple"</span>, <span class="cm-string">"orange"</span>, <span class="cm-string">"banana"</span>, <span class="cm-string">"strawberry"</span>, <span class="cm-string">"mango"</span>],</span>

1
<span role="presentation">        <span class="cm-string">"year"</span>: [<span class="cm-number">2001</span>, <span class="cm-number">2002</span>, <span class="cm-number">2001</span>, <span class="cm-number">2008</span>, <span class="cm-number">2007</span>],</span>

1
<span role="presentation">        <span class="cm-string">"price"</span>: [<span class="cm-number">150</span>, <span class="cm-number">120</span>, <span class="cm-number">100</span>, <span class="cm-number">250</span>, <span class="cm-number">3000</span>]}</span>

1
<span role="presentation"><span class="cm-variable">df2</span> = <span class="cm-variable">pd</span>.<span class="cm-property">DataFrame</span>(<span class="cm-variable">data2</span>)</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-comment"># df1, df2の中身を確認してください</span></span>

1
<span role="presentation"><span class="cm-builtin">print</span>(<span class="cm-variable">df1</span>)</span>

1
<span role="presentation"><span class="cm-builtin">print</span>(<span class="cm-variable">df2</span>)</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-comment"># df1とdf2を"fruits"をキーに内部結合して作成したDataFrameをdf3に代入してください</span></span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-variable">df3</span>= <span class="cm-variable">pd</span>.<span class="cm-property">merge</span>(<span class="cm-variable">df1</span>,<span class="cm-variable">df2</span>,<span class="cm-variable">on</span>=<span class="cm-string">"fruits"</span>,<span class="cm-variable">how</span>=<span class="cm-string">"inner"</span>)</span>

1
<span role="presentation"><span class="cm-builtin">print</span>(<span class="cm-variable">df3</span>)</span>
1
2
3
4
5
6
   amount      fruits  year
0       1       apple  2001
1       4      orange  2002
2       5      banana  2001
3       6  strawberry  2008
4       3   kiwifruit  2006

1
2
3
4
5
6
       fruits  price  year
0       apple    150  2001
1      orange    120  2002
2      banana    100  2001
3  strawberry    250  2008
4       mango   3000  2007

1
2
3
4
5
   amount      fruits  year_x  price  year_y
0       1       apple    2001    150    2001
1       4      orange    2002    120    2002
2       5      banana    2001    100    2001
3       6  strawberry    2008    250    2008

1
 

Filed Under: Numpy, Pandas

DataFrame連結 縦連結は同じカラム 横連結はaxis=1同じインデックス

2017年11月26日 by 河副 太智 Leave a Comment

DataFrame同士を一定の方向についてそのままつなげる操作を連結
pandas.concat("DataFrameのリスト", axis=0)とすることでリストの先頭から順に縦方向に連結
axis=1を指定することで横方向に連結。

縦方向に連結するときは同じカラムについて連結され、
横方向に連結するときは同じインデックスについて連結されます。

 

 

1
<span role="presentation"><span class="cm-keyword">mport</span> <span class="cm-variable">pandas</span> <span class="cm-keyword">as</span> <span class="cm-variable">pd</span></span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-comment"># 指定のインデックスとカラムを持つDataFrameを乱数によって作成する関数</span></span>

1
<span role="presentation"><span class="cm-keyword">def</span> <span class="cm-def">make_random_df</span>(<span class="cm-variable">index</span>, <span class="cm-variable">columns</span>, <span class="cm-variable">seed</span>):</span>

1
<span role="presentation">    <span class="cm-variable">np</span>.<span class="cm-property">random</span>.<span class="cm-property">seed</span>(<span class="cm-variable">seed</span>)</span>

1
<span role="presentation">    <span class="cm-variable">df</span> = <span class="cm-variable">pd</span>.<span class="cm-property">DataFrame</span>()</span>

1
<span role="presentation">    <span class="cm-keyword">for</span> <span class="cm-variable">column</span> <span class="cm-keyword">in</span> <span class="cm-variable">columns</span>:</span>

1
<span role="presentation">        <span class="cm-variable">df</span>[<span class="cm-variable">column</span>] = <span class="cm-variable">np</span>.<span class="cm-property">random</span>.<span class="cm-property">choice</span>(<span class="cm-builtin">range</span>(<span class="cm-number">1</span>, <span class="cm-number">101</span>), <span class="cm-builtin">len</span>(<span class="cm-variable">index</span>))</span>

1
<span role="presentation">    <span class="cm-variable">df</span>.<span class="cm-property">index</span> = <span class="cm-variable">index</span></span>

1
<span role="presentation">    <span class="cm-keyword">return</span> <span class="cm-variable">df</span></span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-variable">columns</span> = [<span class="cm-string">"apple"</span>, <span class="cm-string">"orange"</span>, <span class="cm-string">"banana"</span>]</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-comment"># df_data1とdf_data2を縦方向に連結しdf1に代入</span></span>

1
<span role="presentation"><span class="cm-variable">df1</span>= <span class="cm-variable">pd</span>.<span class="cm-property">concat</span>([<span class="cm-variable">df_data1</span>,<span class="cm-variable">df_data2</span>])</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-comment"># df_data1とdf_data2を横方向に連結しdf2に代入</span></span>

1
<span role="presentation"><span class="cm-variable">df2</span> =<span class="cm-variable">pd</span>.<span class="cm-property">concat</span>([<span class="cm-variable">df_data1</span>,<span class="cm-variable">df_data2</span>], <span class="cm-variable">axis</span>=<span class="cm-number">1</span>)</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-builtin">print</span>(<span class="cm-variable">df1</span>)</span>

1
<span role="presentation"><span class="cm-builtin">print</span>(<span class="cm-variable">df2</span>)</span>
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
   apple  orange  banana
1     45      10      71
2     48      84      89
3     65      22      89
4     68      37      13
5     68      88      59
1     38      76      17
2     13       6       2
3     73      80      77
4     10      65      72
   apple  orange  banana  apple  orange  banana
1     45      10      71   38.0    76.0    17.0
2     48      84      89   13.0     6.0     2.0
3     65      22      89   73.0    80.0    77.0
4     68      37      13   10.0    65.0    72.0
5     68      88      59    NaN     NaN     NaN

Filed Under: Numpy, Pandas Tagged With: 結合

DataFrameの要素を条件に一致する行、列を取得

2017年11月25日 by 河副 太智 Leave a Comment

1
<span role="presentation"><span class="cm-keyword">import</span> <span class="cm-variable">numpy</span> <span class="cm-keyword">as</span> <span class="cm-variable">np</span></span>

1
<span role="presentation"><span class="cm-keyword">import</span> <span class="cm-variable">pandas</span> <span class="cm-keyword">as</span> <span class="cm-variable">pd</span></span>

1
<span role="presentation"><span class="cm-variable">np</span>.<span class="cm-property">random</span>.<span class="cm-property">seed</span>(<span class="cm-number">0</span>)</span>

1
<span role="presentation"><span class="cm-variable">columns</span> = [<span class="cm-string">"apple"</span>, <span class="cm-string">"orange"</span>, <span class="cm-string">"banana"</span>, <span class="cm-string">"strawberry"</span>, <span class="cm-string">"kiwifruit"</span>]</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-comment"># DataFrameを生成し、列を追加</span></span>

1
<span role="presentation"><span class="cm-variable">df</span> = <span class="cm-variable">pd</span>.<span class="cm-property">DataFrame</span>()</span>

1
<span role="presentation"><span class="cm-keyword">for</span> <span class="cm-variable">column</span> <span class="cm-keyword">in</span> <span class="cm-variable">columns</span>:</span>

1
<span role="presentation">    <span class="cm-variable">df</span>[<span class="cm-variable">column</span>] = <span class="cm-variable">np</span>.<span class="cm-property">random</span>.<span class="cm-property">choice</span>(<span class="cm-builtin">range</span>(<span class="cm-number">1</span>, <span class="cm-number">11</span>), <span class="cm-number">10</span>)</span>

1
<span role="presentation"><span class="cm-variable">df</span>.<span class="cm-property">index</span> = <span class="cm-builtin">range</span>(<span class="cm-number">1</span>, <span class="cm-number">11</span>)</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-comment"># dfの"apple"列が5以上かつ"kiwifruit"列が5以上の値をもつ行を含むDataFrameをdfに代入してください</span></span>

1
<span role="presentation">​</span>

1
<span role="presentation">​</span>

1
<span role="presentation"><span class="cm-variable">df</span> = <span class="cm-variable">df</span>.<span class="cm-property">loc</span>[<span class="cm-variable">df</span>[<span class="cm-string">"apple"</span>] <span class="cm-operator">&gt;</span>= <span class="cm-number">5</span>]</span>

1
<span role="presentation"><span class="cm-variable">df</span> = <span class="cm-variable">df</span>.<span class="cm-property">loc</span>[<span class="cm-variable">df</span><span class=" CodeMirror-matchingbracket">[</span><span class="cm-string">"kiwifruit"</span><span class=" CodeMirror-matchingbracket">]</span> <span class="cm-operator">&gt;</span>= <span class="cm-number">5</span>  ]</span>

1
<span role="presentation"><span class="cm-builtin">print</span>(<span class="cm-variable">df</span>)</span>
 
 
 
1
2
3
4
   apple  orange  banana  strawberry  kiwifruit
1      6       8       6           3         10
5      8       2       5           4          8
8      6       8       4           8          8

Filed Under: Numpy, Pandas

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • Interim pages omitted …
  • Page 55
  • Go to Next Page »

Primary Sidebar

カテゴリー

  • AWS
  • Bootstrap
  • Dash
  • Django
  • flask
  • GIT(sourcetree)
  • Plotly/Dash
  • VPS
  • その他tool
  • ブログ
  • プログラミング
    • Bokeh
    • css
    • HoloViews
    • Jupyter
    • Numpy
    • Pandas
    • PosgreSQL
    • Python 基本
    • python3
      • webアプリ
    • python3解説
    • scikit-learn
    • scipy
    • vps
    • Wordpress
    • グラフ
    • コマンド
    • スクレイピング
    • チートシート
    • データクレンジング
    • ブロックチェーン
    • 作成実績
    • 時系列分析
    • 機械学習
      • 分析手法
      • 教師有り
    • 異常値検知
    • 自然言語処理
  • 一太郎
  • 数学
    • sympy
      • 対数関数(log)
      • 累乗根(n乗根)
    • 暗号学

Copyright © 2025 · Genesis Sample on Genesis Framework · WordPress · Log in