• Skip to main content
  • Skip to primary sidebar

学習記録

プログラミング

日本語の混じったcsvファイル読み込みエラー

2019年2月25日 by 河副 太智 Leave a Comment

日本語の混じったcsvファイルをデータフレームに読み込もうとすると
以下のようなエラーが出るdd

‘utf-8’ codec can’t decode byte 0x83 in position 0: invalid start byte

そのような時は以下のような方法で読み込めば
問題なく処理される

1
2
3
4
import codecs
# df = pd.read_csv("data/201902251104359122801.csv")
with codecs.open("data/201902251104359122801.csv", "r", "Shift-JIS", "ignore") as file:
    df = pd.read_table(file, delimiter=",")

 

Filed Under: python3

APIデータを自動投稿

2018年12月11日 by 河副 太智 Leave a Comment

APIデータを自動投稿するpythonプログラム

■複数記事を自動でwordpressに投稿

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import pandas as pd
import plotly.io as pio
import plotly.offline as pyo
import plotly.graph_objs as go
import urllib.request
from time import sleep
from datetime import datetime, date, timedelta
from dateutil.relativedelta import relativedelta
import upftp
import math
import json
from wordpress_xmlrpc import Client, WordPressPost
from wordpress_xmlrpc.methods.posts import GetPosts, NewPost
from wordpress_xmlrpc.methods.users import GetUserInfo
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
 
 
#hsコードから品名を取得する
df_hsname = pd.read_csv("article.csv")
 
 
#パラメーターの作成
 
classification = "&px=H4"
fmt = "&fmt=csv"
partner_area = "&p=0"
amount_country = 50
 
#各国のコードを取得する準備で国の数を取得しjsonを読み込む
url = urllib.request.urlopen("https://comtrade.un.org/data/cache/partnerAreas.json")
jdata = json.loads(url.read().decode())
amount_country = int(len(jdata['results']))
 
 
#クエリ作成とトークン入力
def make_url(reporting_area,import_or_export):
    url = ("https://comtrade.un.org/api/get?type=C" + reporting_area+classification+partner_area + "&rg="+
    str(import_or_export)+"&cc="+com + fmt + "&token=")    
#     print(url)
    return url
 
 
#APIが混雑している際に再取得する
def fetch_url(url):
    for x in range(30):
        try:
            f = urllib.request.urlopen(url)
        except Exception as e:
            pass
            print("トライ30回中" + str(x + 1) + "回目")
            print("1分間の停止後リトライします。")
            sleep(60)
        else:
            return f
            break
    else:
        print("全て失敗しました")
        
 
#URLからcsvをダウンロードし、dfに追加していく
def get_data(import_or_export):
    df = pd.DataFrame(columns=[1,2])
    for i in range(2,amount_country):
 
        reporting_area = "&r=" + (jdata['results'][i]["id"])
        added_area = make_url(reporting_area,import_or_export)
        added_res = fetch_url(added_area)
        added_df = pd.read_csv(added_res)
        df = pd.concat([df,added_df],sort=False)
#         print(str(i)+"回目")
 
    df=df.dropna(subset=['Trade Value (US$)'])              
    return df
 
        
 
# hsコードから品名を取得する
f = open('hscodeH4.json', 'r')
jsonData = json.load(f)
 
 
for i in range(len(df_hsname)):
    now = datetime.now()
    print('now:', now)
    com = str(df_hsname["HS"][i])
    
    
    if len(com) == 5:
        com = "0" + com
    itemname = str(df_hsname["TITLE"][i])  
 
    
    for x in range(len(jsonData["results"])):
        if jsonData['results'][x]["id"] == com:        
            itemname2 = jsonData['results'][x]["text"]
    itemname2 = itemname2[9:]
    fullname = str(itemname2)
    print("次の対象hsは" + com)
    print("記事タイトルは" + itemname)
    print("品名は" + fullname)
 
    
    #輸出グラフ作成用dfを作成
    df = get_data(2)    
    df.to_csv("Log/get_expt.csv")  
    
    #valueが高い順に並べ替え
    df_s = df.sort_values('Trade Value (US$)', ascending=False)
 
    #国名リスト化
    partner = []
    for var in df_s["Reporter"]:
        partner.append(var)
 
    
    #金額のみのグラフ
    data = []
    valuee = []
    for i in partner:
        df2 = df[df["Reporter"] == i]
        trace = go.Bar(x=df2["Reporter"],
                   y=df2['Trade Value (US$)'],
                   text = "M=million$ B=billion$",
                   name = i
                  )
        data.append(trace)
        valuee.append(df2.iat[0,33])
 
    layoute1 = go.Layout(
        title= itemname + "(HScode:" + com + ") Export Trade Statistics in 2017")    
    fig = go.Figure(data=data, layout=layoute1)
#     pio.write_image(fig,'IMG/' + com + '.jpeg')
#     print("画像書き出し完了")
    pyo.plot(fig,filename= com +"expvalue"+ ".html", auto_open=False)  
 
    #個数、重量のグラフ  
 
    df['value/kg'] = 0
    df['value/unit'] = 0
    df.dropna(subset=['Netweight (kg)'],inplace=True)
    df3 = df.reset_index(drop=True)
 
    df3["Netweight (kg)"] = df3["Netweight (kg)"].astype(int)
    df3['Year'] = df3['Year'].astype(int)
 
    for i in range(len(df3)):
        if df3["Netweight (kg)"][i] == 0:
            df3 = df3.drop(i, axis=0)
    df3 = df3.reset_index(drop=True)        
 
    for i in range(len(df3)):
        if df3["Netweight (kg)"][i] < 10000:
            df3.drop(i, axis=0,inplace=True)
    df3 = df3.reset_index(drop=True)  
 
    df3['value/kg'] = df3['value/kg'].astype(float)
 
    for i in range(len(df3)):
         df3['value/kg'][i] = df3['Trade Value (US$)'][i] / df3['Netweight (kg)'][i]
 
 
    #valueが高い順に並べ替え
    df3.sort_values('value/kg', ascending=True,inplace=True)
    df3 = df3.reset_index(drop=True)
    df3.to_csv("expt.csv")
 
    #少なすぎる場合のエラーを防ぐ為に20以下でも対応可能にする
 
    if len(df3["Reporter"]) > 20:
        append_times = 20
    else:
        append_times = len(df3["Reporter"])
 
    # #国名リスト化(top10)
    partner2 = []
    for var in range(append_times):
        partner2.append(df3["Reporter"][var])    
 
 
 
    data2 = []
    pkge = []
    for i in partner2:
        df4 = df3[df3["Reporter"] == i]  
        trace2 = go.Bar(x=df4["Reporter"],
                       y=df4['value/kg'],
                       text = "↑↑Value(US$) Per KG↑↑<br>↓↓Total Export Amount↓↓<br>" + str(df4.iat[0,31]) + "KG",
                       name = i
                      )
        data2.append(trace2)
        pkge.append(round(df4.iat[0,37],2))
 
 
    layoute2 = go.Layout(
        title= itemname + " Export Value Per KG for HScode:" + com,
        width=1000,
        height=250
    )
 
 
    fig = go.Figure(data=data2, layout=layoute2)
    pyo.plot(fig,filename= com +"expkg"+ ".html", auto_open=False)
 
 
 
 
 
 
 
    #輸入データ
 
    #輸入の引数は1
    df = get_data(1)
    df.to_csv("Log/get_impt.csv")  
 
 
    #valueが高い順に並べ替え
    dfi = df.sort_values('Trade Value (US$)', ascending=False)
 
    #国名リスト化
    partneri = []
    for var in dfi["Reporter"]:
        partneri.append(var)
 
 
 
 
    #金額のみのグラフ
 
    datai = []
    valuei = []
    for i in partneri:
        df2 = dfi[dfi["Reporter"] == i]
        trace = go.Bar(x=df2["Reporter"],
                       y=df2['Trade Value (US$)'],
                       text = "M=million$ B=billion$",
                       name = i
                      )
        datai.append(trace)
        valuei.append(df2.iat[0,33])
 
    layouti1 = go.Layout(
        title= itemname + " (HScode:" + com + ")Import Trade Statistics in 2017"
    )  
 
    fig = go.Figure(data=datai, layout=layouti1)
    pyo.plot(fig,filename= com +"ipvalue"+ ".html",auto_open=False)    
 
 
 
    #個数、重量のグラフ  
 
    df['value/kg'] = 0
    df['value/unit'] = 0
    dfi2 = df.dropna(subset=['Netweight (kg)'])
    dfi3 = dfi2.reset_index(drop=True)
 
 
 
    for i in range(len(dfi3)):
        if dfi3["Netweight (kg)"][i] == 0:
            dfi3 = dfi3.drop(i, axis=0)
    dfi3 = dfi3.reset_index(drop=True)        
 
 
 
    for i in range(len(dfi3)):
        if dfi3["Netweight (kg)"][i] < 10000:
            dfi3.drop(i, axis=0,inplace=True)
    dfi3 = dfi3.reset_index(drop=True)  
 
 
 
    dfi3['value/kg'] = dfi3['value/kg'].astype(float)
    dfi3['Year'] = dfi3['Year'].astype(int)
 
    for i in range(len(dfi3)):
         dfi3['value/kg'][i] = dfi3['Trade Value (US$)'][i] / dfi3['Netweight (kg)'][i]
 
 
    #valueが高い順に並べ替え
    dfi3.sort_values('value/kg', ascending=False,inplace=True)
    dfi3 = dfi3.reset_index(drop=True)
 
    dfi3.to_csv("impt.csv")  
 
    # #国名リスト化(top10)
 
    partner2i = []
 
    #少なすぎる場合のエラーを防ぐ為に20以下でも対応可能にする
    if len(dfi3["Reporter"]) > 20:
        append_timesi = 20
    else:
        append_timesi = len(dfi3["Reporter"])
 
 
 
    for var in range(append_timesi):
        partner2i.append(dfi3["Reporter"][var])    
 
 
 
    data3 = []
    pkgi = []
    for i in partner2i:
        dfi4 = dfi3[dfi3["Reporter"] == i]  
        trace3 = go.Bar(x=dfi4["Reporter"],
                       y=dfi4['value/kg'],
                       text = "↑↑Value(US$) Per KG↑↑<br>↓↓Total Import Amount(KG)↓↓<br>" + str(dfi4.iat[0,31]) ,
                       name = i
                      )
        data3.append(trace3)
        pkgi.append(round(dfi4.iat[0,37],2))
 
 
    layouti2 = go.Layout(
        title= itemname + " Import Value Per KG for HScode:" + com,
        width=1000,
        height=250
    )    
 
 
 
    fig = go.Figure(data=data3, layout=layouti2)
    pyo.plot(fig,filename= com +"impkg"+ ".html", auto_open=False)    
 
    print("輸入全体グラフ作成作業終了")
    
    #'Trade Value (US$)'が高い順に並べ替え
 
    df3.sort_values('Trade Value (US$)', ascending=False,inplace=True)
    df3 = df3.reset_index(drop=True)
 
    dfi3.sort_values('Trade Value (US$)', ascending=False,inplace=True)
    dfi3 = dfi3.reset_index(drop=True)
 
 
    #金額をカンマ区切りにする
    for i in range(len(df3['Trade Value (US$)'])):
        a = df3['Trade Value (US$)'][i]
        df3['Trade Value (US$)'][i] = "{:,}".format(float(a))
 
    for i in range(len(dfi3['Trade Value (US$)'])):
        a = dfi3['Trade Value (US$)'][i]
        dfi3['Trade Value (US$)'][i] = "{:,}".format(float(a))
 
    #ウェイトをカンマ区切りにする
    for i in range(len(df3['Netweight (kg)'])):
        a = df3['Netweight (kg)'][i]
        df3['Netweight (kg)'][i] = "{:,}".format(float(a))
 
    for i in range(len(dfi3['Netweight (kg)'])):
        a = dfi3['Netweight (kg)'][i]
        dfi3['Netweight (kg)'][i] = "{:,}".format(float(a))    
 
    #value/kgを下2桁表示にする
    for i in range(len(dfi3['value/kg'])):
        a = dfi3['value/kg'][i]
        dfi3['value/kg'][i] = round(dfi3['value/kg'][i],2)
 
    for i in range(len(df3['value/kg'])):
        a = df3['value/kg'][i]
        df3['value/kg'][i] = round(df3['value/kg'][i],2)
 
    #テーブル化で数値文字化けを防ぐ
    dfi3['Trade Value (US$)'] = dfi3['Trade Value (US$)'].astype(str)
    df3['Trade Value (US$)'] = df3['Trade Value (US$)'].astype(str)
 
 
 
 
    upftp.up_ftptest()  
 
    def bunsho():
        #投稿用記事出力
 
        up_url = "\"https://hstariffstat.com/html/"
        tag_st = "[advanced_iframe use_shortcode_attributes_only=\"true\" src="
        end_value = " ""width=\"100%\" height=\"600\" id=\"advanced_iframe\" ]"
        end_kg = " ""width=\"100%\" height=\"300\" id=\"advanced_iframe\" ]"
        class_tip = "<div class=\"center-block\">"
        class_end = "</div>"
 
 
        #タイトル記事
 
        titlekiji = class_tip + "This article has been written to share the Accurate Statistical Trade Ranking by country.  <br>" + \
        "The graphs that have been shared show the International Trade Price and Weight of <br><b>\"" +fullname + "\"</b>(HScode:" + com +")<br>" + \
        "<br>These graphs may help you to find new Buyer and Supplier Country. " + \
        "<br>All the Statistical data that is depicted here is taken from <a href=https://comtrade.un.org/>UN Comtrade Database.</a><p>" + class_end
 
 
        #輸出価格
 
        exprice = "<h1 id=\"rittai\">Export Trade Statistics of \""+ itemname + "\"(HScode:" + com +")" + "</h1><br><br>" + class_tip + \
        "Here is a graph which shows export statistics of<br><b>" + itemname + "</b>(HScode:" + com + ") worldwide in " + str(df3["Year"][0]) + \
        " <br>With the help of these statistics, you can get the information about the ranking of the top export countries worldwide in" + str(df3["Year"][0]) + "<br>" + class_end + \
        tag_st + up_url + com +"expvalue"+ ".html\"" + end_value+class_tip + \
        "According to the stats, "+ \
        partner[0] + " ranked at the top in exports of \"" + itemname +"\"" + " total export value " +  "{:,}".format(valuee[0]) + "USD <br>"  + \
        partner[0] + " is followed by " + \
        partner[1] + ": " +  "{:,}".format(valuee[1]) + "USD <br>" +\
        partner[2] + ": " +  "{:,}".format(valuee[2]) + "USD <br>" +\
        partner[3] + ": " +  "{:,}".format(valuee[3]) + "USD <br>" +\
        partner[4] + ": " +  "{:,}".format(valuee[4]) + "USD and <br>" +\
        partner[5] + ": " +  "{:,}".format(valuee[5]) + "USD <br>" + "<p>"+class_end
 
        #輸出キロ
        exkgvalue = "<h1 id=\"rittai\">Supplier country’s \"export value per KG\" of \""+ itemname + "</h1><br><br>"+ class_tip + \
        "Another graph below is displaying: <br><b>\"The export value per KG in USD\"</b>"+ \
        "(The Total Weight divides the Total Export Value) <br>"+ \
        "This graph shows which country exports items at a lower price in comparison with the other countries. <p>"+ \
        class_end + \
        tag_st +up_url + com +"expkg"+ ".html\"" + end_kg+ \
        class_tip + \
        partner2[0] + " ranked first in Exports \"" + itemname +"\" at the lowest price of " + str(pkge[0]) + "USD/KG " + \
        partner2[0] + " is followed by " + partner2[1]  + str(pkge[1])  + "USD/KG" + ", " + \
        partner2[2] + str(pkge[2]) + "USD/KG"+ ", " + \
        partner2[3] + str(pkge[3]) + "USD/KG"+ ", " + \
        partner2[4] + str(pkge[4]) + "USD/KG"+ \
        ", and " + \
        partner2i[5] + str(pkge[4]) + "USD/KG" + "<p>" + class_end
 
 
        #輸入価格
        imprice = "<h1 id=\"rittai\">Import Trade Statistics of \""+ itemname + "\"(HScode:" + com +")" + "</h1><br><br>" + class_tip + \
        "The statistics show the ranking of<br><b>" + itemname + "</b>(HScode:" + com + ") worldwide in " + str(df3["Year"][0]) + class_end + \
        tag_st + up_url + com + "ipvalue"+ ".html\"" + end_value + class_tip + \
        "the top importing countries worldwide in " + str(df3["Year"][0]) + "<br>" +\
        partneri[0] + " ranked first in imports of \"" + itemname +"\"" + " Total import value " +  "{:,}".format(valuei[0]) + "USD <br>" + \
        partneri[0] + " is followed by " + \
        partneri[1] + ": " +  "{:,}".format(valuei[1]) + "USD <br>" + \
        partneri[2] + ": " +  "{:,}".format(valuei[2]) + "USD <br>" + \
        partneri[3] + ": " +  "{:,}".format(valuei[3]) + "USD <br>" + \
        partneri[4] + ": " +  "{:,}".format(valuei[4]) + "USD and <br>" + \
        partneri[5] + ": " +  "{:,}".format(valuei[5]) + "USD <br>" + "<p>" + class_end
 
 
        #輸入キロ
        imkgvalue = "<h1 id=\"rittai\">Buyer country's \"import Value per KG\" of \""+ itemname + "</h1><br><br>" + class_tip + \
        "The graph below is displaying: <br><b>\"Import Value per KG in USD\"</b>" + \
        "(the total weight divides the total Import value)<br>" + \
        "It shows which country imports items at a higher price and comparison with other countries." + class_end + \
        tag_st +up_url + com +"impkg"+ ".html\"" + end_kg + class_tip + \
        partner2i[0] + " ranked first in imports \"" + itemname +"\" at the highest price of " + str(pkgi[0]) + "/KG " + \
        partner2i[0] + " is followed by " + partner2i[1] + ", " + partner2i[2] + ", " + partner2i[3]+ ", " + partner2i[4] + \
        ", and " + partner2i[5] + "<p>" + class_end
 
 
 
        #輸出テーブル作成
        cut_e = df3
        to_remove = [1,2,'Classification','Period Desc."','Aggregate Level','Is Leaf Code','Trade Flow Code','Reporter Code',
                 'Partner Code','Partner','Partner ISO','2nd Partner Code','2nd Partner','2nd Partner ISO','Customs Proc. Code',
                 'Customs','Mode of Transport Code"','Mode of Transport','Commodity Code','Commodity','Qty Unit Code','Flag','value/unit',
                'CIF Trade Value (US$)','FOB Trade Value (US$)','Gross weight (kg)','Mode of Transport Code','Period','Period Desc.',
                 'Qty','Qty Unit','Alt Qty Unit Code']
        cut_e = cut_e[cut_e.columns.difference(to_remove)]
        cut_e = cut_e.rename(columns={'Reporter ISO':'ISO'})
 
        cut_e.sort_values('Trade Value (US$)', ascending=False,inplace=True)
        cut_e = cut_e.reset_index(drop=True)
 
 
        cut_e2 = cut_e.loc[:,['Reporter','ISO','Year','Trade Flow','Trade Value (US$)','Netweight (kg)','Alt Qty','Alt Qty Unit','value/kg']]
 
        exphtml = cut_e2.to_html(classes="extable")
        cap_exphtml = "<h1 id=\"rittai\">Table data of \""+ itemname + "\"(HS:" + com +")" + "[Export]</h1><br><br>" + \
        "<caption>" + itemname + " Export Trading Statistics (HScode:" + com + ")</caption>\n" + exphtml
 
 
        #輸入テーブル作成
        cut_i = dfi3
        to_remove = [1,2,'Classification','Period Desc."','Aggregate Level','Is Leaf Code','Trade Flow Code','Reporter Code',
                 'Partner Code','Partner','Partner ISO','2nd Partner Code','2nd Partner','2nd Partner ISO','Customs Proc. Code',
                 'Customs','Mode of Transport Code"','Mode of Transport','Commodity Code','Commodity','Qty Unit Code','Flag','value/unit',
                'CIF Trade Value (US$)','FOB Trade Value (US$)','Gross weight (kg)','Mode of Transport Code','Period','Period Desc.',
                 'Qty','Qty Unit','Alt Qty Unit Code']
        cut_i = cut_i[cut_i.columns.difference(to_remove)]
        cut_i = cut_i.rename(columns={'Reporter ISO':'ISO'})
 
        cut_i.sort_values('Trade Value (US$)', ascending=False,inplace=True)
        cut_i = cut_i.reset_index(drop=True)
 
 
        cut_i2 = cut_i.loc[:,['Reporter','ISO','Year','Trade Flow','Trade Value (US$)','Netweight (kg)','Alt Qty','Alt Qty Unit','value/kg']]
 
        imphtml = cut_i2.to_html(classes="imtable")
        cap_imphtml = "<h1 id=\"rittai\">Table data of \""+ itemname + "\"(HS:" + com +")" + "[Import]</h1><br><br>" + \
        "<caption>" + itemname + " Import Trading Statistics (HScode:" + com + ")</caption>\n" + imphtml  
 
        title = itemname + "\"(HS:" + com +")" + "World Trade Statistics"
        #全て結合
        kiji_all= titlekiji + exprice + exkgvalue + imprice + imkgvalue + "<p>" + cap_exphtml  + "<p>" + cap_imphtml
        return kiji_all
 
 
 
    kiji_all = bunsho()
    title = itemname + "\"(HS:" + com +")" + "World Trade Statistics"
    wp = Client('http://hstariffstat.com/xmlrpc.php', 'id', 'pass')
    post = WordPressPost()
    post.title = title
    post.content = kiji_all
    post.terms_names = {'post_tag': [itemname, 'trade statistics'],'category': ['2017']}
    post.post_status = 'publish'
    wp.call(NewPost(post))
print("全て完了")

■FTPアップロードを行うupftp.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#FTPにアップロード
 
import glob
import string
import os
from ftplib import FTP
import urllib.request
 
 
def up_ftp():
    filelist=glob.glob('*.html')
 
    ftp=FTP('sv2142.xserver.jp')
    ftp.set_pasv("true")
    ftp.login('id','pass')
    ftp.cwd('/hstariffstat.com/public_html/html/') #ホスト側のディレクトリ
 
 
 
    for file in filelist:
    #     f=open(file,'rb')
        with open(file, "rb") as f:
            filename=os.path.basename(file)
            cmd='STOR '+filename
 
            ftp.storbinary(cmd,f)
            f.close()
    ftp.quit()
 
    for file in filelist:
        os.remove(file)
 
    print("FTPアップロード完了")

■個別記事を自動でwordpressに投稿

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import pandas as pd
import plotly.io as pio
import plotly.offline as pyo
import plotly.graph_objs as go
import urllib.request
from time import sleep
from datetime import datetime, date, timedelta
from dateutil.relativedelta import relativedelta
import upftp
import json
from wordpress_xmlrpc import Client, WordPressPost
from wordpress_xmlrpc.methods.posts import GetPosts, NewPost
from wordpress_xmlrpc.methods.users import GetUserInfo
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
 
 
 
 
com = input("HSコードを入力してください")
com = com.replace('.', '')
#hsコードから品名を取得する
f = open('hscodeH4.json', 'r')
jsonData = json.load(f)
 
for i in range(len(jsonData["results"])):
    if jsonData['results'][i]["id"] == com:
        print("発見")
        itemname = jsonData['results'][i]["text"]
 
itemname = itemname[9:]
fullname = itemname
print(itemname)
prename = input("必要があれば上記品名を変更して下さい。")
if prename != "":
    itemname = prename
print("グラフは以下の名前で表示されます" + itemname)
 
 
 
#パラメーターの作成
#trade data type C Commodities S Services
datatype = "type=C"
#china=156,UK=826,US=842,jp=392or all
# reporting_area = "&r=842"
# #Annual=A,Monthly=M
# frequency = "&freq=A"
# #YYYY or YYYYMM or now or recent 
# time_period = "&ps=recent"
# Harmonized System (HS)
classification = "&px=H4"
#china=156,UK=826,US=842,or all=0
partner_area = "&p=0"
# 1 (imports) and 2 (exports),
# import_or_export = ("&rg=" + imp_or_exp)
#HS CODE
classification_code = ("&cc=" + com)
#csv or json
fmt = "&fmt=csv"
#対象国の数
amount_country = 50
#TOKEN
token = ""
 
 
#各国のコードを取得する準備で国の数を取得しjsonを読み込む
url = urllib.request.urlopen("https://comtrade.un.org/data/cache/partnerAreas.json")
jdata = json.loads(url.read().decode())
amount_country = int(len(jdata['results']))
 
 
#クエリ作成とトークン入力
def make_url(reporting_area,import_or_export):
    url = ("https://comtrade.un.org/api/get?"+datatype + reporting_area+classification+partner_area+"&rg=" +
    str(import_or_export)+classification_code+fmt+"&token=")    
    print(url)
    return url
 
 
#APIが混雑している際に再取得する
def fetch_url(url):
    for x in range(30):
        try:
            f = urllib.request.urlopen(url)
        except Exception as e:
            pass
            print("トライ30回中" + str(x + 1) + "回目")
            print("1分間の停止後リトライします。")
            sleep(60)
        else:
            return f
            break
    else:
        print("全て失敗しました")
            
#URLからcsvをダウンロードし、dfに追加していく
def get_data(import_or_export):
    df = pd.DataFrame(columns=[1,2])
    for i in range(2,amount_country):
 
        reporting_area = "&r=" + (jdata['results'][i]["id"])
        added_area = make_url(reporting_area,import_or_export)
        added_res = fetch_url(added_area)
        added_df = pd.read_csv(added_res)
        df = pd.concat([df,added_df],sort=False)
        print(str(i)+"回目")
        now = datetime.now()
        print('now:', now)
    df=df.dropna(subset=['Trade Value (US$)'])  
                  
    return df
 
# #輸出データ
 
 
#輸出の引数は2
df = get_data(2)
 
#valueが高い順に並べ替え
df_s = df.sort_values('Trade Value (US$)', ascending=False)
 
#国名リスト化
partner = []
for var in df_s["Reporter"]:
    partner.append(var)
 
 
#金額のみのグラフ
data = []
valuee = []
for i in partner:
    df2 = df[df["Reporter"] == i]
    trace = go.Bar(x=df2["Reporter"],
                   y=df2['Trade Value (US$)'],
                   text = "M=million$ B=billion$",
                   name = i
                  )
    data.append(trace)
    valuee.append(df2.iat[0,33])
 
layoute1 = go.Layout(
    title= itemname + "(HScode:" + com + ") Export Trade Statistics in 2017")    
    
fig = go.Figure(data=data, layout=layoute1)
pio.write_image(fig, com + '.jpeg')
pyo.plot(fig,filename= com +"expvalue"+ ".html", auto_open=False)    
    
 
    
#個数、重量のグラフ  
 
df['value/kg'] = 0
df['value/unit'] = 0
df.dropna(subset=['Netweight (kg)'],inplace=True)
df3 = df.reset_index(drop=True)
 
df3["Netweight (kg)"] = df3["Netweight (kg)"].astype(int)
df3['Year'] = df3['Year'].astype(int)
 
 
 
 
for i in range(len(df3)):
    if df3["Netweight (kg)"][i] == 0:
        df3 = df3.drop(i, axis=0)
df3 = df3.reset_index(drop=True)        
      
 
 
for i in range(len(df3)):
    if df3["Netweight (kg)"][i] < 10000:
        df3.drop(i, axis=0,inplace=True)
df3 = df3.reset_index(drop=True)  
 
 
 
        
 
df3['value/kg'] = df3['value/kg'].astype(float)
 
for i in range(len(df3)):
     df3['value/kg'][i] = df3['Trade Value (US$)'][i] / df3['Netweight (kg)'][i]
        
 
#valueが高い順に並べ替え
df3.sort_values('value/kg', ascending=True,inplace=True)
df3 = df3.reset_index(drop=True)
df3.to_csv("expt.csv")
 
#少なすぎる場合のエラーを防ぐ為に20以下でも対応可能にする
 
if len(df3["Reporter"]) > 20:
    append_times = 20
else:
    append_times = len(df3["Reporter"])
 
# #国名リスト化(top10)
partner2 = []
for var in range(append_times):
    partner2.append(df3["Reporter"][var])    
 
 
 
data2 = []
pkge = []
for i in partner2:
    df4 = df3[df3["Reporter"] == i]  
    trace2 = go.Bar(x=df4["Reporter"],
                   y=df4['value/kg'],
                   text = "↑↑Value(US$) Per KG↑↑<br>↓↓Total Export Amount↓↓<br>" + str(df4.iat[0,31]) + "KG",
                   name = i
                  )
    data2.append(trace2)
    pkge.append(round(df4.iat[0,37],2))
 
    
layoute2 = go.Layout(
    title= itemname + " Export Value Per KG for HScode:" + com,
    width=1000,
    height=250
)
        
    
fig = go.Figure(data=data2, layout=layoute2)
pyo.plot(fig,filename= com +"expkg"+ ".html", auto_open=False)
 
 
 
 
 
 
 
#輸入データ
 
#輸入の引数は1
df = get_data(1)
 
 
 
#valueが高い順に並べ替え
dfi = df.sort_values('Trade Value (US$)', ascending=False)
 
#国名リスト化
partneri = []
for var in dfi["Reporter"]:
    partneri.append(var)
 
 
 
 
#金額のみのグラフ
datai = []
valuei = []
for i in partneri:
    df2 = dfi[dfi["Reporter"] == i]
    trace = go.Bar(x=df2["Reporter"],
                   y=df2['Trade Value (US$)'],
                   text = "M=million$ B=billion$",
                   name = i
                  )
    datai.append(trace)
    valuei.append(df2.iat[0,33])
    
layouti1 = go.Layout(
    title= itemname + " (HScode:" + com + ")Import Trade Statistics in 2017"
)  
 
fig = go.Figure(data=datai, layout=layouti1)
pyo.plot(fig,filename= com +"ipvalue"+ ".html",auto_open=False)    
 
 
 
#個数、重量のグラフ  
 
df['value/kg'] = 0
df['value/unit'] = 0
dfi2 = df.dropna(subset=['Netweight (kg)'])
dfi3 = dfi2.reset_index(drop=True)
 
 
 
for i in range(len(dfi3)):
    if dfi3["Netweight (kg)"][i] == 0:
        dfi3 = dfi3.drop(i, axis=0)
dfi3 = dfi3.reset_index(drop=True)        
      
 
 
for i in range(len(dfi3)):
    if dfi3["Netweight (kg)"][i] < 10000:
        dfi3.drop(i, axis=0,inplace=True)
dfi3 = dfi3.reset_index(drop=True)  
 
 
 
dfi3['value/kg'] = dfi3['value/kg'].astype(float)
dfi3['Year'] = dfi3['Year'].astype(int)
 
for i in range(len(dfi3)):
     dfi3['value/kg'][i] = dfi3['Trade Value (US$)'][i] / dfi3['Netweight (kg)'][i]
        
 
#valueが高い順に並べ替え
dfi3.sort_values('value/kg', ascending=False,inplace=True)
dfi3 = dfi3.reset_index(drop=True)
  
dfi3.to_csv("impt.csv")  
 
# #国名リスト化(top10)
partner2i = []
 
#少なすぎる場合のエラーを防ぐ為に20以下でも対応可能にする
if len(dfi3["Reporter"]) > 20:
    append_timesi = 20
else:
    append_timesi = len(dfi3["Reporter"])
 
 
 
for var in range(append_timesi):
    partner2i.append(dfi3["Reporter"][var])    
 
 
 
data3 = []
pkgi = []
for i in partner2i:
    dfi4 = dfi3[dfi3["Reporter"] == i]  
    trace3 = go.Bar(x=dfi4["Reporter"],
                   y=dfi4['value/kg'],
                   text = "↑↑Value(US$) Per KG↑↑<br>↓↓Total Import Amount(KG)↓↓<br>" + str(dfi4.iat[0,31]) ,
                   name = i
                  )
    data3.append(trace3)
    pkgi.append(round(dfi4.iat[0,37],2))
 
 
layouti2 = go.Layout(
    title= itemname + " Import Value Per KG for HScode:" + com,
    width=1000,
    height=250
)    
    
    
        
fig = go.Figure(data=data3, layout=layouti2)
pyo.plot(fig,filename= com +"impkg"+ ".html", auto_open=False)    
 
#'Trade Value (US$)'が高い順に並べ替え
 
df3.sort_values('Trade Value (US$)', ascending=False,inplace=True)
df3 = df3.reset_index(drop=True)
 
dfi3.sort_values('Trade Value (US$)', ascending=False,inplace=True)
dfi3 = dfi3.reset_index(drop=True)
 
 
#金額をカンマ区切りにする
for i in range(len(df3['Trade Value (US$)'])):
    a = df3['Trade Value (US$)'][i]
    df3['Trade Value (US$)'][i] = "{:,}".format(float(a))
    
for i in range(len(dfi3['Trade Value (US$)'])):
    a = dfi3['Trade Value (US$)'][i]
    dfi3['Trade Value (US$)'][i] = "{:,}".format(float(a))
    
#ウェイトをカンマ区切りにする
for i in range(len(df3['Netweight (kg)'])):
    a = df3['Netweight (kg)'][i]
    df3['Netweight (kg)'][i] = "{:,}".format(float(a))
    
for i in range(len(dfi3['Netweight (kg)'])):
    a = dfi3['Netweight (kg)'][i]
    dfi3['Netweight (kg)'][i] = "{:,}".format(float(a))    
 
#value/kgを下2桁表示にする
for i in range(len(dfi3['value/kg'])):
    a = dfi3['value/kg'][i]
    dfi3['value/kg'][i] = round(dfi3['value/kg'][i],2)
 
for i in range(len(df3['value/kg'])):
    a = df3['value/kg'][i]
    df3['value/kg'][i] = round(df3['value/kg'][i],2)
 
#テーブル化で数値文字化けを防ぐ
dfi3['Trade Value (US$)'] = dfi3['Trade Value (US$)'].astype(str)
df3['Trade Value (US$)'] = df3['Trade Value (US$)'].astype(str)
 
 
 
 
upftp.up_ftp()
 
#全ての文字列を一つの変数に入れてpyperclip.copy()でコピーできるようにする
 
 
def bunsho():
    #投稿用記事出力
 
    up_url = "\"https://hstariffstat.com/html/"
    tag_st = "[advanced_iframe use_shortcode_attributes_only=\"true\" src="
    end_value = " ""width=\"100%\" height=\"600\" id=\"advanced_iframe\" ]"
    end_kg = " ""width=\"100%\" height=\"300\" id=\"advanced_iframe\" ]"
    class_tip = "<div class=\"center-block\">"
    class_end = "</div>"
 
    
    #タイトル記事
    
    titlekiji = class_tip + "This article has been written to share the Accurate Statistical Trade Ranking by country.  <br>" + \
    "The graphs that have been shared show the International Trade Price and Weight of <br><b>\"" +fullname + "\"</b>(HScode:" + com +")" + \
    "<br>These graphs may help you to find new Buyer and Supplier Country. " + \
    "<br>All the Statistical data that is depicted here is taken from <a href=https://comtrade.un.org/>UN Comtrade Database.</a><p>" + class_end
 
    
    #輸出価格
 
    exprice = "<h1 id=\"rittai\">Export Trade Statistics of \""+ itemname + "\"(HScode:" + com +")" + "</h1><br><br>" + class_tip + \
    "Here is a graph which shows export statistics of<br><b>" + itemname + "</b>(HScode:" + com + ") worldwide in " + str(df3["Year"][0]) + \
    " <br>With the help of these statistics, you can get the information about the ranking of the top export countries worldwide in" + str(df3["Year"][0]) + "<br>" + class_end + \
    tag_st + up_url + com +"expvalue"+ ".html\"" + end_value+class_tip + \
    "According to the stats, "+ \
    partner[0] + " ranked at the top in exports of \"" + itemname +"\"" + " total export value " +  "{:,}".format(valuee[0]) + "USD <br>"  + \
    partner[0] + " is followed by " + \
    partner[1] + ": " +  "{:,}".format(valuee[1]) + "USD <br>" +\
    partner[2] + ": " +  "{:,}".format(valuee[2]) + "USD <br>" +\
    partner[3] + ": " +  "{:,}".format(valuee[3]) + "USD <br>" +\
    partner[4] + ": " +  "{:,}".format(valuee[4]) + "USD and <br>" +\
    partner[5] + ": " +  "{:,}".format(valuee[5]) + "USD <br>" + "<p>"+class_end
 
    #輸出キロ
    exkgvalue = "<h1 id=\"rittai\">Supplier country’s \"export value per KG\" of \""+ itemname + "</h1><br><br>"+ class_tip + \
    "Another graph below is displaying: <br><b>\"The export value per KG in USD\"</b>"+ \
    "(The Total Weight divides the Total Export Value) <br>"+ \
    "This graph shows which country exports items at a lower price in comparison with the other countries. <p>"+ \
    class_end + \
    tag_st +up_url + com +"expkg"+ ".html\"" + end_kg+ \
    class_tip + \
    partner2[0] + " ranked first in Exports \"" + itemname +"\" at the lowest price of " + str(pkge[0]) + "USD/KG " + \
    partner2[0] + " is followed by " + partner2[1]  + str(pkge[1])  + "USD/KG" + ", " + \
    partner2[2] + str(pkge[2]) + "USD/KG"+ ", " + \
    partner2[3] + str(pkge[3]) + "USD/KG"+ ", " + \
    partner2[4] + str(pkge[4]) + "USD/KG"+ \
    ", and " + \
    partner2i[5] + str(pkge[4]) + "USD/KG" + "<p>" + class_end
 
 
    #輸入価格
    imprice = "<h1 id=\"rittai\">Import Trade Statistics of \""+ itemname + "\"(HScode:" + com +")" + "</h1><br><br>" + class_tip + \
    "The statistics show the ranking of<br><b>" + itemname + "</b>(HScode:" + com + ") worldwide in " + str(df3["Year"][0]) + class_end + \
    tag_st + up_url + com + "ipvalue"+ ".html\"" + end_value + class_tip + \
    "the top importing countries worldwide in " + str(df3["Year"][0]) + "<br>" +\
    partneri[0] + " ranked first in imports of \"" + itemname +"\"" + " Total import value " +  "{:,}".format(valuei[0]) + "USD <br>" + \
    partneri[0] + " is followed by " + \
    partneri[1] + ": " +  "{:,}".format(valuei[1]) + "USD <br>" + \
    partneri[2] + ": " +  "{:,}".format(valuei[2]) + "USD <br>" + \
    partneri[3] + ": " +  "{:,}".format(valuei[3]) + "USD <br>" + \
    partneri[4] + ": " +  "{:,}".format(valuei[4]) + "USD and <br>" + \
    partneri[5] + ": " +  "{:,}".format(valuei[5]) + "USD <br>" + "<p>" + class_end
 
 
    #輸入キロ
    imkgvalue = "<h1 id=\"rittai\">Buyer country's \"import Value per KG\" of \""+ itemname + "</h1><br><br>" + class_tip + \
    "The graph below is displaying: <br><b>\"Import Value per KG in USD\"</b>" + \
    "(the total weight divides the total Import value)<br>" + \
    "It shows which country imports items at a higher price and comparison with other countries." + class_end + \
    tag_st +up_url + com +"impkg"+ ".html\"" + end_kg + class_tip + \
    partner2i[0] + " ranked first in imports \"" + itemname +"\" at the highest price of " + str(pkgi[0]) + "/KG " + \
    partner2i[0] + " is followed by " + partner2i[1] + ", " + partner2i[2] + ", " + partner2i[3]+ ", " + partner2i[4] + \
    ", and " + partner2i[5] + "<p>" + class_end
    
 
    
    #輸出テーブル作成
    cut_e = df3
    to_remove = [1,2,'Classification','Period Desc."','Aggregate Level','Is Leaf Code','Trade Flow Code','Reporter Code',
             'Partner Code','Partner','Partner ISO','2nd Partner Code','2nd Partner','2nd Partner ISO','Customs Proc. Code',
             'Customs','Mode of Transport Code"','Mode of Transport','Commodity Code','Commodity','Qty Unit Code','Flag','value/unit',
            'CIF Trade Value (US$)','FOB Trade Value (US$)','Gross weight (kg)','Mode of Transport Code','Period','Period Desc.',
             'Qty','Qty Unit','Alt Qty Unit Code']
    cut_e = cut_e[cut_e.columns.difference(to_remove)]
    cut_e = cut_e.rename(columns={'Reporter ISO':'ISO'})
 
    cut_e.sort_values('Trade Value (US$)', ascending=False,inplace=True)
    cut_e = cut_e.reset_index(drop=True)
 
 
    cut_e2 = cut_e.loc[:,['Reporter','ISO','Year','Trade Flow','Trade Value (US$)','Netweight (kg)','Alt Qty','Alt Qty Unit','value/kg']]
 
    exphtml = cut_e2.to_html(classes="extable")
    cap_exphtml = "<h1 id=\"rittai\">Table data of \""+ itemname + "\"(HS:" + com +")" + "[Export]</h1><br><br>" + \
    "<caption>" + itemname + " Export Trading Statistics (HScode:" + com + ")</caption>\n" + exphtml
    
    
    #輸入テーブル作成
    cut_i = dfi3
    to_remove = [1,2,'Classification','Period Desc."','Aggregate Level','Is Leaf Code','Trade Flow Code','Reporter Code',
             'Partner Code','Partner','Partner ISO','2nd Partner Code','2nd Partner','2nd Partner ISO','Customs Proc. Code',
             'Customs','Mode of Transport Code"','Mode of Transport','Commodity Code','Commodity','Qty Unit Code','Flag','value/unit',
            'CIF Trade Value (US$)','FOB Trade Value (US$)','Gross weight (kg)','Mode of Transport Code','Period','Period Desc.',
             'Qty','Qty Unit','Alt Qty Unit Code']
    cut_i = cut_i[cut_i.columns.difference(to_remove)]
    cut_i = cut_i.rename(columns={'Reporter ISO':'ISO'})
 
    cut_i.sort_values('Trade Value (US$)', ascending=False,inplace=True)
    cut_i = cut_i.reset_index(drop=True)
 
 
    cut_i2 = cut_i.loc[:,['Reporter','ISO','Year','Trade Flow','Trade Value (US$)','Netweight (kg)','Alt Qty','Alt Qty Unit','value/kg']]
 
    imphtml = cut_i2.to_html(classes="imtable")
    cap_imphtml = "<h1 id=\"rittai\">Table data of \""+ itemname + "\"(HS:" + com +")" + "[Import]</h1><br><br>" + \
    "<caption>" + itemname + " Import Trading Statistics (HScode:" + com + ")</caption>\n" + imphtml  
    
    title = itemname + "\"(HS:" + com +")" + "World Trade Statistics"
    #全て結合
    kiji_all= titlekiji + exprice + exkgvalue + imprice + imkgvalue + "<p>" + cap_exphtml  + "<p>" + cap_imphtml
    return kiji_all
 
 
 
kiji_all = bunsho()
title = itemname + "\"(HS:" + com +")" + "World Trade Statistics"
wp = Client('http://hstariffstat.com/xmlrpc.php', 'id', 'pass')
post = WordPressPost()
post.title = title
post.content = kiji_all
post.terms_names = {'post_tag': [itemname, 'trade statistics'],'category': ['worldwide']}
post.post_status = 'publish'
wp.call(NewPost(post))

 

Filed Under: 作成実績

タイムアウトの設定

2018年12月9日 by 河副 太智 Leave a Comment

エラー文が表示されずにプログラムが停止する場合に処理を再開したい
場合は一定時間の経過をエラーとみなすためにタイムアウトの設定が
必要になる。

Pythonの場合は以下のように記述する

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import time
import timeout_decorator
 
 
def very_long_function():
    for i in range(100):
        print i
        time.sleep(1)
 
 
@timeout_decorator.timeout(5)
def test():
    very_long_function()
 
 
if __name__ == '__main__':
    try:
        test()
    except:
        print "test timed out :("
    else:
        print "test finished successfully :)"

 

Filed Under: python3

変数のメモリ内容を一覧表示

2018年12月8日 by 河副 太智 Leave a Comment

各変数のメモリ内容を一覧表示する
オーバーフローを防ぐ時に使える

■jupyterにて使用可能

1
2
3
4
5
6
7
8
    #メモリ確認
    import sys
 
    print("{}{: >25}{}{: >10}{}".format('|','Variable Name','|','Memory','|'))
    print(" ------------------------------------ ")
    for var_name in dir():
        if not var_name.startswith("_"):
            print("{}{: >25}{}{: >10}{}".format('|',var_name,'|',sys.getsizeof(eval(var_name)),'|'))

以下のように表示される

 

| Variable Name| Memory|
————————————
| Client| 1304|
| GetPosts| 1016|
| GetUserInfo| 1016|
| In| 96|
| NewPost| 1016|
| Out| 288|
| WordPressPost| 1304|
| a| 32|
| amount_country| 28|
| append_times| 28|
| append_timesi| 28|
| bunsho| 136|
| classification| 55|
| com| 55|
| data| 768|
| data2| 264|
| data3| 264|
| datai| 912|
| date| 400|
| datetime| 400|
| df| 94318|
| df2| 1008|
| df3| 50079|
| df4| 1025|
| df_hsname| 3006|
| df_s| 74071|
| dfi| 92814|
| dfi2| 86330|
| dfi3| 54441|
| dfi4| 1011|
| exit| 56|
| f| 216|
| fetch_url| 136|
| fig| 56|
| fmt| 57|
| fullname| 228|
| get_data| 136|
| get_ipython| 64|
| go| 80|
| i| 28|
| itemname| 71|
| itemname2| 228|
| jdata| 288|
| json| 80|
| jsonData| 288|
| kiji_all| 54100|
| layoute1| 56|
| layoute2| 56|
| layouti1| 56|
| layouti2| 56|
| make_url| 136|
| math| 80|
| now| 48|
| partner| 768|
| partner2| 264|
| partner2i| 264|
| partner_area| 53|
| partneri| 912|
| pd| 80|
| pio| 80|
| pkge| 264|
| pkgi| 264|
| post| 56|
| pyo| 80|
| quit| 56|
| relativedelta| 1016|
| sleep| 72|
| ssl| 80|
| sys| 80|
| timedelta| 400|
| title| 105|
| trace| 56|
| trace2| 56|
| trace3| 56|
| upftp| 80|
| url| 56|
| urllib| 80|
| valuee| 768|
| valuei| 912|
| var| 28|
| var_name| 57|
| wp| 56|
| x| 28|

Filed Under: Jupyter, python3

condaでインストールできずpipで行う場合

2018年11月28日 by 河副 太智 Leave a Comment

$ conda info -e
で環境一覧を確認すると以下のように表示される

base * C:\Users\abc\AppData\Local\Continuum\anaconda3

次に
activate C:\Users\abc\AppData\Local\Continuum\anaconda3
と入力すると(base)の環境に入る

ここでpipを使ってインストールして最後に
deactivate
でデフォルトの環境に戻る

Filed Under: コマンド

文字列の改行(変数内)

2018年11月28日 by 河副 太智 Leave a Comment

ジュピターではスラッシュが¥で表示される
¥の直後にスペースがあるとエラーになる

1
2
3
4
5
6
7
8
9
10
11
exprice = "<h1 id=\"rittai\">Export Trade Statistics of \""+ itemname + "\"(HScode:" + com +")" + "</h1><br><br>" + class_tip + \
    "The graph below shows export statistics of<br><b>" + itemname + "</b>(HScode:" + com + ") worldwide in " + str(df3["Year"][0]) + class_end + \
    tag_st + up_url + com +"expvalue"+ ".html\"" + end_value+class_tip+ \
    "The statistic shows a ranking of the top export countries worldwide in " + str(df3["Year"][0])+ "<br>" +\
    partner[0] + " ranked first in exports of \"" + itemname +"\"" + " Total export value " +  "{:,}".format(valuee[0]) + "USD <br>"  + \
    partner[0] + " is followed by " + \
    partner[1] + ": " +  "{:,}".format(valuee[1]) + "USD <br>" +\
    partner[2] + ": " +  "{:,}".format(valuee[2]) + "USD <br>" +\
    partner[3] + ": " +  "{:,}".format(valuee[3]) + "USD <br>" +\
    partner[4] + ": " +  "{:,}".format(valuee[4]) + "USD and <br>" +\
    partner[5] + ": " +  "{:,}".format(valuee[5]) + "USD <br>" + "<p>"+class_end

 

Filed Under: python3

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Interim pages omitted …
  • Page 55
  • Go to Next Page »

Primary Sidebar

カテゴリー

  • AWS
  • Bootstrap
  • Dash
  • Django
  • flask
  • GIT(sourcetree)
  • Plotly/Dash
  • VPS
  • その他tool
  • ブログ
  • プログラミング
    • Bokeh
    • css
    • HoloViews
    • Jupyter
    • Numpy
    • Pandas
    • PosgreSQL
    • Python 基本
    • python3
      • webアプリ
    • python3解説
    • scikit-learn
    • scipy
    • vps
    • Wordpress
    • グラフ
    • コマンド
    • スクレイピング
    • チートシート
    • データクレンジング
    • ブロックチェーン
    • 作成実績
    • 時系列分析
    • 機械学習
      • 分析手法
      • 教師有り
    • 異常値検知
    • 自然言語処理
  • 一太郎
  • 数学
    • sympy
      • 対数関数(log)
      • 累乗根(n乗根)
    • 暗号学

Copyright © 2025 · Genesis Sample on Genesis Framework · WordPress · Log in