• Skip to main content
  • Skip to primary sidebar

学習記録

python3

forを抜ける

2018年2月10日 by 河副 太智 Leave a Comment

breakで抜ける、passで何もしないで再度forに戻る

1
2
3
4
5
6
    for x in range((len(own_delated))):
        if own_delated[x] % 2 == 0:
            arr = np.append(arr, np.array([[1,own_delated[x]]]), axis=0)
            break
        else:
            pass

 

Filed Under: python3

‘int’ object is not iterableが出た場合

2018年1月23日 by 河副 太智 Leave a Comment

‘int’ object is not iterableが出た場合forでin len()を設定すると
オブジェクトの数値が対象となってしまうのでin range()を使用する

1
for i in range((len(a))):

 

Filed Under: python3

指定の文字を別の文字に置き換える

2018年1月16日 by 河副 太智 Leave a Comment

1
2
3
4
5
6
7
8
9
for dataset in full_data:
    dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col',\
'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')
 
    dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
 
print (train[['Title', 'Survived']].groupby(['Title'], as_index=False).mean())

 

Filed Under: python3

データのインポート

2018年1月16日 by 河副 太智 Leave a Comment

インポート用コード

1
2
3
4
5
6
7
8
pd.read_csv(filename) # From a CSV file
pd.read_table(filename) # From a delimited text file (like TSV)
pd.read_excel(filename) # From an Excel file
pd.read_sql(query, connection_object) # Reads from a SQL table/database
pd.read_json(json_string) # Reads from a JSON formatted string, URL or file.
pd.read_html(url) # Parses an html URL, string or file and extracts tables to a list of dataframes
pd.read_clipboard() # Takes the contents of your clipboard and passes it to read_table()
pd.DataFrame(dict) # From a dict, keys for columns names, values for data as lists

 

Filed Under: python3

カテゴリ変数の変換

2018年1月15日 by 河副 太智 Leave a Comment

タイタニックのデータmaleを1、femaleを0に変換し、
搭乗地域S,C,Qを0,1,2に変換

1
2
3
#カテゴリ変数の変換
df['Sex'] = df['Sex'].apply(lambda x: 1 if x == 'male' else 0)
df['Embarked'] = df['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).astype(int)

 

Filed Under: python3

データセットのダウンロード

2017年12月31日 by 河副 太智 Leave a Comment

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import numpy as np
import pandas as pd
import sklearn
from sklearn.datasets import load_iris
 
 
iris_dataset = load_iris()
 
print(iris_dataset.keys())
#>>>  ['DESCR', 'target_names', 'feature_names', 'target', 'data']
#DESCRはデータセットの解説があるという事
#その他はデータの種類を示している
 
 
print(iris_dataset["DESCR"[:193]]+"\n...")
#データセットの詳細を知る為にDESCRを表示

結果

150のデータと4つのデータの種類設定コード

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
Iris Plants Database
====================
 
Notes
-----
Data Set Characteristics:
    :Number of Instances: 150 (50 in each of three classes)
    :Number of Attributes: 4 numeric, predictive attributes and the class
    :Attribute Information:
        - sepal length in cm
        - sepal width in cm
        - petal length in cm
        - petal width in cm
        - class:
                - Iris-Setosa
                - Iris-Versicolour
                - Iris-Virginica
    :Summary Statistics:
 
    ============== ==== ==== ======= ===== ====================
                    Min  Max   Mean    SD   Class Correlation
    ============== ==== ==== ======= ===== ====================
    sepal length:   4.3  7.9   5.84   0.83    0.7826
    sepal width:    2.0  4.4   3.05   0.43   -0.4194
    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)
    petal width:    0.1  2.5   1.20  0.76     0.9565  (high!)
    ============== ==== ==== ======= ===== ====================
 
    :Missing Attribute Values: None
    :Class Distribution: 33.3% for each of 3 classes.
    :Creator: R.A. Fisher
    :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
    :Date: July, 1988
 
This is a copy of UCI ML iris datasets.
http://archive.ics.uci.edu/ml/datasets/Iris
 
The famous Iris database, first used by Sir R.A Fisher
 
This is perhaps the best known database to be found in the
pattern recognition literature.  Fisher's paper is a classic in the field and
is referenced frequently to this day.  (See Duda & Hart, for example.)  The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant.  One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.
 
References
----------
   - Fisher,R.A. "The use of multiple measurements in taxonomic problems"
     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
     Mathematical Statistics" (John Wiley, NY, 1950).
   - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.
   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
     Structure and Classification Rule for Recognition in Partially Exposed
     Environments".  IEEE Transactions on Pattern Analysis and Machine
     Intelligence, Vol. PAMI-2, No. 1, 67-71.
   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions
     on Information Theory, May 1972, 431-433.
   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II
     conceptual clustering system finds 3 classes in the data.
   - Many, many more ...
 
...

 

targetnameの種類を知りたい場合(アイリスの名称一覧)

1
print(iris_dataset["target_names"])

1
['setosa' 'versicolor' 'virginica']

 

Filed Under: python3, scikit-learn Tagged With: データの種類, 種類一覧

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Interim pages omitted …
  • Page 12
  • Go to Next Page »

Primary Sidebar

カテゴリー

  • AWS
  • Bootstrap
  • Dash
  • Django
  • flask
  • GIT(sourcetree)
  • Plotly/Dash
  • VPS
  • その他tool
  • ブログ
  • プログラミング
    • Bokeh
    • css
    • HoloViews
    • Jupyter
    • Numpy
    • Pandas
    • PosgreSQL
    • Python 基本
    • python3
      • webアプリ
    • python3解説
    • scikit-learn
    • scipy
    • vps
    • Wordpress
    • グラフ
    • コマンド
    • スクレイピング
    • チートシート
    • データクレンジング
    • ブロックチェーン
    • 作成実績
    • 時系列分析
    • 機械学習
      • 分析手法
      • 教師有り
    • 異常値検知
    • 自然言語処理
  • 一太郎
  • 数学
    • sympy
      • 対数関数(log)
      • 累乗根(n乗根)
    • 暗号学

Copyright © 2025 · Genesis Sample on Genesis Framework · WordPress · Log in