• Skip to main content
  • Skip to primary sidebar

学習記録

scikit-learn

複数の分類器で一気に比較

2018年1月19日 by 河副 太智 Leave a Comment

複数の分類器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import pandas as pd
from sklearn.model_selection import train_test_split
 
df = pd.read_csv('train.csv')
 
df = df.drop(['Cabin','Name','PassengerId','Ticket'],axis=1)
train_X = df.drop('Survived', axis=1)
train_y = df.Survived
(train_X, test_X ,train_y, test_y) = train_test_split(train_X, train_y, test_size = 0.3, random_state = 666)
 
 
#決定木
from sklearn.tree import DecisionTreeClassifier
ki = DecisionTreeClassifier(random_state=0).fit(train_X, train_y)
print(ki.score(train_X,train_y))
 
 
 
#ランダムフォレスト
from sklearn.ensemble import RandomForestClassifier
mori = RandomForestClassifier(random_state=0).fit(train_X,train_y)
print(mori.score(train_X,train_y))
 
 
#ロジスティック回帰
from sklearn.linear_model import LogisticRegression
logi = LogisticRegression(C=100).fit(train_X,train_y)
print(logi.score(train_X,train_y))
 
 
#KNN
from sklearn.neighbors import KNeighborsClassifier
KNN = KNeighborsClassifier(4).fit(train_X,train_y)
print(KNN.score(train_X,train_y))
 
#SVC
from sklearn.svm import SVC
svc = SVC(probability=True).fit(train_X,train_y)
print(svc.score(train_X,train_y))
 
#AdaBoostClassifier
from sklearn.ensemble import AdaBoostClassifier
ada = AdaBoostClassifier().fit(train_X,train_y)
print(ada.score(train_X,train_y))
 
#GradientBoostingClassifier
from sklearn.ensemble import GradientBoostingClassifier
gra = GradientBoostingClassifier().fit(train_X,train_y)
print(gra.score(train_X,train_y))
 
#GaussianNB
from sklearn.naive_bayes import GaussianNB
gaus = GaussianNB().fit(train_X,train_y)
print(gaus.score(train_X,train_y))
 
#LinearDiscriminantAnalysis
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis().fit(train_X,train_y)
print(lda.score(train_X,train_y))
 
#QuadraticDiscriminantAnalysis
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
qua = QuadraticDiscriminantAnalysis().fit(train_X,train_y)
print(qua.score(train_X,train_y))

Out[]:
0.982343499197
0.967897271268
0.807383627608
0.796147672552
0.886035313002
0.837881219904
0.898876404494
0.796147672552
0.799357945425
0.813804173355

Filed Under: scikit-learn, 分析手法, 教師有り, 機械学習

ユーザー、自分の問いに答える(アイリス)

2018年1月1日 by 河副 太智 Leave a Comment

ユーザーがアイリスの形状を4種類指定して、
それがどの種類のアイリスになるのかを予測する

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import sklearn
import mglearn
 
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from IPython.display import display
from sklearn.neighbors import KNeighborsClassifier
 
%matplotlib inline
 
 
 
iris_dataset = load_iris()
 
#花の特徴左からガクの長さ、ガクの幅、花弁の長さ、花弁の幅
#トータル150のデータの内10個を表示
print("◆最初の10個のカラムデータ:\n\n{}".format(iris_dataset["data"][:10]))
 
#上記のdataに対する答え [0=setosa,1=versicolor,2=virginica]
print("\n◆上記データに対する答え [0=setosa,1=versicolor,2=virginica]:\n{}".format(iris_dataset["target"][:10]))
 
#学習用に75%テスト用に25%に分ける
X_train,X_test,y_train, y_test = train_test_split(
    iris_dataset["data"],iris_dataset["target"],random_state=0)
 
#X_trainは(112, 4)となる、これは上記で75%に分けた112の花びらのデータ数と
#そのデータの要素4つ分になる
print("\n◆75%に分けた112の花びらのデータ数とそのデータの要素4つ:\n{}".format(X_train.shape))
 
#y_trainは(112)となる、これは上記で75%に分けた花びらの種類の答え(0,1,2)の
#どれか一つが入っている
print("\n◆75%に分けた花びらの種類の答え(0,1,2)のどれか一つ:\n{}".format(y_train.shape))
 
#X_testは(38,4)となるこれは上記で25%に分けた38の花びらのデータ数と
#そのデータの要素4つ分になる
print("\n◆25%に分けた38の花びらのデータ数とそのデータの要素4つ分:\n{}".format(X_test.shape))
 
#y_test shapeは(38.)となるこれは上記で25%に分けた花びらの種類の答え(0,1,2)の
#どれか一つが入っている
print("\n◆25%に分けた38の花びらの種類の答え(0,1,2)のどれか一つ:\n{}".format(y_test.shape))
 
#[データの検査]
#答えである(0,1,2)がある程度分離できているかどうかを可視化する
#アイリスの種類ごとに色を変えて表示する、この場合は3点がある程度分離できていれば
#訓練できる可能性が高いと言える、逆にゴチャゴチャであれば学習は難しい
 
#1.X_trainのデータからDataFrameを作る
#iris_dataset.feature_namesの文字列をつかってカラムに名前を付ける
iris_dataframe = pd.DataFrame(X_train,columns=iris_dataset.feature_names)
 
#データフレームからscatter matrixを作成し、y_trainに従って色をつける
pd.plotting.scatter_matrix(iris_dataframe,c=y_train,figsize=(15,15),marker="o",
                        hist_kwds={"bins":20},s=60,alpha=.8,cmap=mglearn.cm3)
 
#KNeighborsClassifierをfitで(X_train,y_train)を予測
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train,y_train)
 
 
#KNeighborsClassifierにて行った予測の精度を確認
print("◆KNeighborsClassifierにて行った予測の精度を確認:\n{:.2f}".format(knn.score(X_test, y_test)))
 
 
#ユーザーからの問いに対する予測を行う[5,2.9,1,0.2]がユーザーからの問い
X_new = np.array([[5,2.9,1,0.2]])
 
#元のX_test.shapeと同じ配列でなければいけないので配列形式を確認
print("◆元のデータの配列形式:\n{}".format(iris_dataset["data"][:1]))
print("◆ユーザーデータの配列形式(元と同じ形なのでOK):\n{}".format(X_new))
 
 
 
prediction = knn.predict(X_new)
print("◆0,1,2のどれを選択したか:\n{}".format(prediction))
print("◆ターゲット(花の名前):\n{}".format(iris_dataset["target_names"][prediction]))

 

結果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
◆最初の10個のカラムデータ:
 
[[ 5.1  3.5  1.4  0.2]
[ 4.9  3.   1.4  0.2]
[ 4.7  3.2  1.3  0.2]
[ 4.6  3.1  1.5  0.2]
[ 5.   3.6  1.4  0.2]
[ 5.4  3.9  1.7  0.4]
[ 4.6  3.4  1.4  0.3]
[ 5.   3.4  1.5  0.2]
[ 4.4  2.9  1.4  0.2]
[ 4.9  3.1  1.5  0.1]]
 
◆上記データに対する答え [0=setosa,1=versicolor,2=virginica]:
[0 0 0 0 0 0 0 0 0 0]
 
◆75%に分けた112の花びらのデータ数とそのデータの要素4つ:
(112, 4)
 
◆75%に分けた花びらの種類の答え(0,1,2)のどれか一つ:
(112,)
 
◆25%に分けた38の花びらのデータ数とそのデータの要素4つ分:
(38, 4)
 
◆25%に分けた38の花びらの種類の答え(0,1,2)のどれか一つ:
(38,)
◆KNeighborsClassifierにて行った予測の精度を確認:
0.97
◆元のデータの配列形式:
[[ 5.1  3.5  1.4  0.2]]
◆ユーザーデータの配列形式(元と同じ形なのでOK):
[[ 5.   2.9  1.   0.2]]
◆0,1,2のどれを選択したか:
[0]
◆ターゲット(花の名前):
['setosa']

 

 

Filed Under: scikit-learn, グラフ, 作成実績, 教師有り, 機械学習

データセットのダウンロード

2017年12月31日 by 河副 太智 Leave a Comment

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import numpy as np
import pandas as pd
import sklearn
from sklearn.datasets import load_iris
 
 
iris_dataset = load_iris()
 
print(iris_dataset.keys())
#>>>  ['DESCR', 'target_names', 'feature_names', 'target', 'data']
#DESCRはデータセットの解説があるという事
#その他はデータの種類を示している
 
 
print(iris_dataset["DESCR"[:193]]+"\n...")
#データセットの詳細を知る為にDESCRを表示

結果

150のデータと4つのデータの種類設定コード

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
Iris Plants Database
====================
 
Notes
-----
Data Set Characteristics:
    :Number of Instances: 150 (50 in each of three classes)
    :Number of Attributes: 4 numeric, predictive attributes and the class
    :Attribute Information:
        - sepal length in cm
        - sepal width in cm
        - petal length in cm
        - petal width in cm
        - class:
                - Iris-Setosa
                - Iris-Versicolour
                - Iris-Virginica
    :Summary Statistics:
 
    ============== ==== ==== ======= ===== ====================
                    Min  Max   Mean    SD   Class Correlation
    ============== ==== ==== ======= ===== ====================
    sepal length:   4.3  7.9   5.84   0.83    0.7826
    sepal width:    2.0  4.4   3.05   0.43   -0.4194
    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)
    petal width:    0.1  2.5   1.20  0.76     0.9565  (high!)
    ============== ==== ==== ======= ===== ====================
 
    :Missing Attribute Values: None
    :Class Distribution: 33.3% for each of 3 classes.
    :Creator: R.A. Fisher
    :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
    :Date: July, 1988
 
This is a copy of UCI ML iris datasets.
http://archive.ics.uci.edu/ml/datasets/Iris
 
The famous Iris database, first used by Sir R.A Fisher
 
This is perhaps the best known database to be found in the
pattern recognition literature.  Fisher's paper is a classic in the field and
is referenced frequently to this day.  (See Duda & Hart, for example.)  The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant.  One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.
 
References
----------
   - Fisher,R.A. "The use of multiple measurements in taxonomic problems"
     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
     Mathematical Statistics" (John Wiley, NY, 1950).
   - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.
   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
     Structure and Classification Rule for Recognition in Partially Exposed
     Environments".  IEEE Transactions on Pattern Analysis and Machine
     Intelligence, Vol. PAMI-2, No. 1, 67-71.
   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions
     on Information Theory, May 1972, 431-433.
   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II
     conceptual clustering system finds 3 classes in the data.
   - Many, many more ...
 
...

 

targetnameの種類を知りたい場合(アイリスの名称一覧)

1
print(iris_dataset["target_names"])

1
['setosa' 'versicolor' 'virginica']

 

Filed Under: python3, scikit-learn Tagged With: データの種類, 種類一覧

Primary Sidebar

カテゴリー

  • AWS
  • Bootstrap
  • Dash
  • Django
  • flask
  • GIT(sourcetree)
  • Plotly/Dash
  • VPS
  • その他tool
  • ブログ
  • プログラミング
    • Bokeh
    • css
    • HoloViews
    • Jupyter
    • Numpy
    • Pandas
    • PosgreSQL
    • Python 基本
    • python3
      • webアプリ
    • python3解説
    • scikit-learn
    • scipy
    • vps
    • Wordpress
    • グラフ
    • コマンド
    • スクレイピング
    • チートシート
    • データクレンジング
    • ブロックチェーン
    • 作成実績
    • 時系列分析
    • 機械学習
      • 分析手法
      • 教師有り
    • 異常値検知
    • 自然言語処理
  • 一太郎
  • 数学
    • sympy
      • 対数関数(log)
      • 累乗根(n乗根)
    • 暗号学

Copyright © 2025 · Genesis Sample on Genesis Framework · WordPress · Log in