ウィンドウズボタンとRでコマンドプロンプト
cmdと入れる
cd jupyter_notebookと入れる
jupyter notebookと入れる
しばらく待つと立ち上がる
ウィンドウズボタンとRでコマンドプロンプト
cmdと入れる
cd jupyter_notebookと入れる
jupyter notebookと入れる
しばらく待つと立ち上がる
1 2 3 4 5 6 |
import numpy as np import pandas as pd iris_dataset = load_iris() print(iris_dataset["data"][:5]) |
1 2 3 4 5 |
[[ 5.1 3.5 1.4 0.2] [ 4.9 3. 1.4 0.2] [ 4.7 3.2 1.3 0.2] [ 4.6 3.1 1.5 0.2] [ 5. 3.6 1.4 0.2]] |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
import numpy as np import pandas as pd import sklearn from sklearn.datasets import load_iris iris_dataset = load_iris() print(iris_dataset.keys()) #>>> ['DESCR', 'target_names', 'feature_names', 'target', 'data'] #DESCRはデータセットの解説があるという事 #その他はデータの種類を示している print(iris_dataset["DESCR"[:193]]+"\n...") #データセットの詳細を知る為にDESCRを表示 |
結果
150のデータと4つのデータの種類設定コード
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
Iris Plants Database ==================== Notes ----- Data Set Characteristics: :Number of Instances: 150 (50 in each of three classes) :Number of Attributes: 4 numeric, predictive attributes and the class :Attribute Information: - sepal length in cm - sepal width in cm - petal length in cm - petal width in cm - class: - Iris-Setosa - Iris-Versicolour - Iris-Virginica :Summary Statistics: ============== ==== ==== ======= ===== ==================== Min Max Mean SD Class Correlation ============== ==== ==== ======= ===== ==================== sepal length: 4.3 7.9 5.84 0.83 0.7826 sepal width: 2.0 4.4 3.05 0.43 -0.4194 petal length: 1.0 6.9 3.76 1.76 0.9490 (high!) petal width: 0.1 2.5 1.20 0.76 0.9565 (high!) ============== ==== ==== ======= ===== ==================== :Missing Attribute Values: None :Class Distribution: 33.3% for each of 3 classes. :Creator: R.A. Fisher :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov) :Date: July, 1988 This is a copy of UCI ML iris datasets. http://archive.ics.uci.edu/ml/datasets/Iris The famous Iris database, first used by Sir R.A Fisher This is perhaps the best known database to be found in the pattern recognition literature. Fisher's paper is a classic in the field and is referenced frequently to this day. (See Duda & Hart, for example.) The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other. References ---------- - Fisher,R.A. "The use of multiple measurements in taxonomic problems" Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to Mathematical Statistics" (John Wiley, NY, 1950). - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis. (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218. - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System Structure and Classification Rule for Recognition in Partially Exposed Environments". IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 1, 67-71. - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions on Information Theory, May 1972, 431-433. - See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II conceptual clustering system finds 3 classes in the data. - Many, many more ... ... |
targetnameの種類を知りたい場合(アイリスの名称一覧)
1 |
print(iris_dataset["target_names"]) |
1 |
['setosa' 'versicolor' 'virginica'] |
1 2 3 4 5 6 7 8 9 |
import pandas as pd from IPython.display import display data ={"name":["jonh","anna","peter","linda"], "location":["new york","paris","berlin","london"], "age":[24,13,53,33]} data_pandas = pd.DataFrame(data) display(data_pandas) |
1 2 3 4 5 6 7 8 9 10 |
from scipy import sparse import numpy as np %matplotlib inline import matplotlib.pyplot as plt x = np.linspace(-10,10,100) y = np.sin(x) plt.plot(x,y,marker="x") |
1 |
print("NumPy array: \n {}".format(aaa)) |